99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀簡單介紹數據分析行業(yè)中的六個技術(四)
簡單介紹數據分析行業(yè)中的六個技術(四)
2019-02-14
收藏


在人工智能中,人工神經網絡是一個十分重要的內容,而人工神經網絡就是模擬了人類的大腦。由此可見,要想學習人工智能就不得不說一說人工神經網絡的知識,那么人工神經網絡的知識都有哪些呢?下面我們就給大家介紹一下這些知識。


人工神經網絡簡稱神經網絡或類神經網絡,在機器學習和認知科學領域,是一種模仿生物神經網絡的結構和功能的數學模型或計算模型,用于對函數進行估計或近似。神經網絡的構筑理念是受到生物神經網絡功能的運作啟發(fā)而產生的。人工神經網絡通常是通過一個基于數學統(tǒng)計學類型的學習方法得以優(yōu)化,所以也是數學統(tǒng)計學方法的一種實際應用,通過統(tǒng)計學的標準數學方法我們能夠得到大量的可以用函數來表達的局部結構空間,另一方面在人工智能學的人工感知領域,我們通過數學統(tǒng)計學的應用可以來做人工感知方面的決定問題(也就是說通過統(tǒng)計學的方法,人工神經網絡能夠類似人一樣具有簡單的決定能力和簡單的判斷能力),這種方法比起正式的邏輯學推理演算更具有優(yōu)勢。神經網絡由大量的人工神經元聯結進行計算。大多數情況下人工神經網絡能在外界信息的基礎上改變內部結構,是一種自適應系統(tǒng),通俗的講就是具備學習功能。人工神經網絡是一種非程序化、適應性、大腦風格的信息處理,其本質是通過網絡的變換和動力學行為得到一種并行分布式的信息處理功能,并在不同程度和層次上模仿人腦神經系統(tǒng)的信息處理功能。它是涉及神經科學、思維科學、人工智能、計算機科學等多個領域的交叉學科。


和其他機器學習方法一樣,神經網絡已經被用于解決各種各樣的問題,例如機器視覺和語音識別。這些問題都是很難被傳統(tǒng)基于規(guī)則的編程所解決的。在人工神經網絡中,神經元處理單元可表示不同的對象,例如特征、字母、概念,或者一些有意義的抽象模式。網絡中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統(tǒng)處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統(tǒng)外部觀察的單元。


我們在這篇文章中給大家介紹了人工神經網絡的知識,從上面的內容可以看到人工神經網絡是一個十分重要的內容,我們要重視這些內容,希望這篇文章能夠幫助大家更好的理解人工智能。

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調用 initGeetest 進行初始化 // 參數1:配置參數 // 參數2:回調,回調的第一個參數驗證碼對象,之后可以使用它調用相應的接口 initGeetest({ // 以下 4 個配置參數為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產品形式,包括:float,popup width: "280px", https: true // 更多配置參數說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }