
在數(shù)據(jù)分析中,數(shù)據(jù)挖掘工作是一個(gè)十分重要的工作,可以說(shuō),數(shù)據(jù)挖掘工作占據(jù)數(shù)據(jù)分析工作的時(shí)間將近一半,由此可見(jiàn)數(shù)據(jù)挖掘的重要性,要想做好數(shù)據(jù)挖掘工作需要掌握一些方法,那么數(shù)據(jù)挖掘的常用方法都有哪些呢?下面就由小編為大家解答一下這個(gè)問(wèn)題。
首先給大家說(shuō)一下神經(jīng)網(wǎng)絡(luò)方法。神經(jīng)網(wǎng)絡(luò)是模擬人類(lèi)的形象直覺(jué)思維,在生物神經(jīng)網(wǎng)絡(luò)研究的基礎(chǔ)上,根據(jù)生物神經(jīng)元和神經(jīng)網(wǎng)絡(luò)的特點(diǎn),通過(guò)簡(jiǎn)化、歸納、提煉總結(jié)出來(lái)的一類(lèi)并行處理網(wǎng)絡(luò),利用其非線性映射的思想和并行處理的方法,用神經(jīng)網(wǎng)絡(luò)本身結(jié)構(gòu)來(lái)表達(dá)輸入和輸出的關(guān)聯(lián)知識(shí)。神經(jīng)網(wǎng)絡(luò)方法在數(shù)據(jù)挖掘中十分常見(jiàn)。
然后給大家說(shuō)一下粗糙集方法。粗糙集理論是一種研究不精確、不確定知識(shí)的數(shù)學(xué)工具。粗糙集處理的對(duì)象是類(lèi)似二維關(guān)系表的信息表。目前成熟的關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng)和新發(fā)展起來(lái)的數(shù)據(jù)倉(cāng)庫(kù)管理系統(tǒng),為粗糙集的數(shù)據(jù)挖掘奠定了堅(jiān)實(shí)的基礎(chǔ)。粗糙集理論能夠在缺少先驗(yàn)知識(shí)的情況下,對(duì)數(shù)據(jù)進(jìn)行分類(lèi)處理。在該方法中知識(shí)是以信息系統(tǒng)的形式表示的,先對(duì)信息系統(tǒng)進(jìn)行歸約,再?gòu)慕?jīng)過(guò)歸約后的知識(shí)庫(kù)抽取得到更有價(jià)值、更準(zhǔn)確的一系列規(guī)則。因此,基于粗糙集的數(shù)據(jù)挖掘算法實(shí)際上就是對(duì)大量數(shù)據(jù)構(gòu)成的信息系統(tǒng)進(jìn)行約簡(jiǎn),得到一種屬性歸約集的過(guò)程,最后抽取規(guī)則。
而決策樹(shù)方法也是數(shù)據(jù)挖掘的常用方法之一。決策樹(shù)是一種常用于預(yù)測(cè)模型的算法,它通過(guò)一系列規(guī)則將大量數(shù)據(jù)有目的分類(lèi),從中找到一些有價(jià)值的、潛在的信息。它的主要優(yōu)點(diǎn)是描述簡(jiǎn)單,分類(lèi)速度快,易于理解、精度較高,特別適合大規(guī)模的數(shù)據(jù)處理,在知識(shí)發(fā)現(xiàn)系統(tǒng)中應(yīng)用較廣。它的主要缺點(diǎn)是很難基于多個(gè)變量組合發(fā)現(xiàn)規(guī)則。在數(shù)據(jù)挖掘中,決策樹(shù)常用于分類(lèi)。
最后給大家說(shuō)的是遺傳算法。遺傳算法是一種基于生物自然選擇與遺傳機(jī)理的隨機(jī)搜索算法。數(shù)據(jù)挖掘是從大量數(shù)據(jù)中提取人們感興趣的知識(shí),這些知識(shí)是隱含的、事先未知的、潛在有用的信息。因此,許多數(shù)據(jù)挖掘問(wèn)題可以看成是搜索問(wèn)題,數(shù)據(jù)庫(kù)或者數(shù)據(jù)倉(cāng)庫(kù)為搜索空間,挖掘算法是搜索策略。
上述的內(nèi)容就是我們?yōu)榇蠹抑v解的數(shù)據(jù)挖掘工作中常用的方法了,數(shù)據(jù)挖掘工作常用的方法就是神經(jīng)網(wǎng)絡(luò)方法、粗糙集方法、決策樹(shù)方法、遺傳算法,掌握了這些方法才能夠做好數(shù)據(jù)挖掘工作。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
訓(xùn)練與驗(yàn)證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過(guò)程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類(lèi)核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對(duì)數(shù)據(jù)的需求已從 “存儲(chǔ)” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計(jì)基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計(jì)基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語(yǔ)言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類(lèi)型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專(zhuān)業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專(zhuān)業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷(xiāo)案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷(xiāo)成為企業(yè)突圍的核心方 ...
2025-09-11