
20個小招數(shù)教你如果快速完成Python 性能優(yōu)化升級
使用python時,你是不是需要性能優(yōu)化?今天C君給大家?guī)?a href='/map/python/' style='color:#000;font-size:inherit;'>python性能優(yōu)化的20條招數(shù),建議收藏~
1.優(yōu)化算法時間復(fù)雜度
算法的時間復(fù)雜度對程序的執(zhí)行效率影響最大,在 Python 中可以通過選擇合適的數(shù)據(jù)結(jié)構(gòu)來優(yōu)化時間復(fù)雜度,如 list 和 set 查找某一個元素的時間復(fù)雜度分別是O(n)和O(1)。不同的場景有不同的優(yōu)化方式,總得來說,一般有分治,分支界限,貪心,動態(tài)規(guī)劃等思想。
2.減少冗余數(shù)據(jù)
如用上三角或下三角的方式去保存一個大的對稱矩陣。在0元素占大多數(shù)的矩陣?yán)锸褂孟∈杈仃嚤硎尽?br />
3.合理使用 copy 與 deepcopy
對于 dict 和 list 等數(shù)據(jù)結(jié)構(gòu)的對象,直接賦值使用的是引用的方式。而有些情況下需要復(fù)制整個對象,這時可以使用 copy 包里的 copy 和 deepcopy,這兩個函數(shù)的不同之處在于后者是遞歸復(fù)制的。效率也不一樣:(以下程序在 ipython 中運(yùn)行)
1import copy
2a = range(100000)
3%timeit -n 10 copy.copy(a) # 運(yùn)行10次 copy.copy(a)
4%timeit -n 10 copy.deepcopy(a)
510 loops, best of 3: 1.55 ms per loop
610 loops, best of 3: 151 ms per loop
timeit 后面的-n表示運(yùn)行的次數(shù),后兩行對應(yīng)的是兩個 timeit 的輸出,下同。由此可見后者慢一個數(shù)量級。
4.使用 dict 或 set 查找元素
python dict 和 set 都是使用 hash 表來實現(xiàn)(類似c++11標(biāo)準(zhǔn)庫中unordered_map),查找元素的時間復(fù)雜度是O(1)
1a = range(1000)
2s = set(a)
3d = dict((i,1) for i in a)
4%timeit -n 10000 100 in d
5%timeit -n 10000 100 in s10000 loops, best of 3: 43.5 ns per loop10000 loops, best of 3: 49.6 ns per loop
dict 的效率略高(占用的空間也多一些)。
5.合理使用生成器(generator)和 yield
1%timeit -n 100 a = (i for i in range(100000))
2%timeit -n 100 b = [i for i in range(100000)]100 loops, best of 3: 1.54 ms per loop100 loops, best of 3: 4.56 ms per loop
使用()得到的是一個 generator 對象,所需要的內(nèi)存空間與列表的大小無關(guān),所以效率會高一些。在具體應(yīng)用上,比如 set(i for i in range(100000))會比 set([i for i in range(100000)])快。
但是對于需要循環(huán)遍歷的情況:
1%timeit -n 10 for x in (i for i in range(100000)): pass
2%timeit -n 10 for x in [i for i in range(100000)]: pass10 loops, best of 3: 6.51 ms per loop10 loops, best of 3: 5.54 ms per loop
后者的效率反而更高,但是如果循環(huán)里有 break,用 generator 的好處是顯而易見的。yield 也是用于創(chuàng)建 generator:
1def yield_func(ls):
2 for i in ls:
3 yield i+1
4def not_yield_func(ls):
5 return [i+1 for i in ls]
6ls = range(1000000)
7%timeit -n 10 for i in yield_func(ls):pass
8%timeit -n 10 for i in not_yield_func(ls):pass
910 loops, best of 3: 63.8 ms per loop
1010 loops, best of 3: 62.9 ms per loop
對于內(nèi)存不是非常大的 list,可以直接返回一個 list,但是可讀性 yield 更佳(人個喜好)。
python2.x 內(nèi)置 generator 功能的有 xrange 函數(shù)、itertools 包等。
6.優(yōu)化循環(huán)
循環(huán)之外能做的事不要放在循環(huán)內(nèi),比如下面的優(yōu)化可以快一倍:
1a = range(10000)
2size_a = len(a)
3%timeit -n 1000 for i in a: k = len(a)
4%timeit -n 1000 for i in a: k = size_a
51000 loops, best of 3: 569 μs per loop
61000 loops, best of 3: 256 μs per loop
7.優(yōu)化包含多個判斷表達(dá)式的順序
對于 and,應(yīng)該把滿足條件少的放在前面,對于 or,把滿足條件多的放在前面。如:
1a = range(2000)
2%timeit -n 100 [i for i in a if 10 < i < 20 or 1000 < i < 2000]
3%timeit -n 100 [i for i in a if 1000 < i < 2000 or 100 < i < 20]
4%timeit -n 100 [i for i in a if i % 2 == 0 and i > 1900]
5%timeit -n 100 [i for i in a if i > 1900 and i % 2 == 0]
6100 loops, best of 3: 287 μs per loop
7100 loops, best of 3: 214 μs per loop
8100 loops, best of 3: 128 μs per loop
9100 loops, best of 3: 56.1 μs per loop
8.使用 join 合并迭代器中的字符串
1In [1]: %%timeit
2 ...: s = ''
3 ...: for i in a:
4 ...: s += i
5 ...:10000 loops, best of 3: 59.8 μs per loopIn [2]: %%timeit
6s = ''.join(a)
7 ...:100000 loops, best of 3: 11.8 μs per loop
join 對于累加的方式,有大約5倍的提升。
9.選擇合適的格式化字符方式
1s1, s2 = 'ax', 'bx'
2%timeit -n 100000 'abc%s%s' % (s1, s2)
3%timeit -n 100000 'abc{0}{1}'.format(s1, s2)
4%timeit -n 100000 'abc' + s1 + s2
5100000 loops, best of 3: 183 ns per loop
6100000 loops, best of 3: 169 ns per loop
7100000 loops, best of 3: 103 ns per loop
三種情況中,%的方式是最慢的,但是三者的差距并不大(都非??欤?。
10.不借助中間變量交換兩個變量的值
1In [3]: %%timeit -n 10000
2 a,b=1,2
3 ....: c=a;a=b;b=c;
4 ....:10000 loops, best of 3: 172 ns per loop
5In [4]: %%timeit -n 10000
6a,b=1,2
7a,b=b,a
8 ....:
910000 loops, best of 3: 86 ns per loop
使用a,b=b,a而不是c=a;a=b;b=c;來交換a,b的值,可以快1倍以上。
11.使用 if is
1a = range(10000)
2%timeit -n 100 [i for i in a if i == True]
3%timeit -n 100 [i for i in a if i is True]
4100 loops, best of 3: 531 μs per loop
5100 loops, best of 3: 362 μs per loop
使用 if is True 比 if == True 將近快一倍。
12使用級聯(lián)比較x < y < z
1x, y, z = 1,2,3
2%timeit -n 1000000 if x < y < z:pass
3%timeit -n 1000000 if x < y and y < z:pass
41000000 loops, best of 3: 101 ns per loop
51000000 loops, best of 3: 121 ns per loop
x < y < z效率略高,而且可讀性更好。
13.while 1 比 while True 更快
1def while_1():
2 n = 100000
3 while 1:
4 n -= 1
5 if n <= 0: break
6def while_true():
7 n = 100000
8 while True:
9 n -= 1
10 if n <= 0: break
11m, n = 1000000, 1000000
12%timeit -n 100 while_1()
13%timeit -n 100 while_true()
14100 loops, best of 3: 3.69 ms per loop
15100 loops, best of 3: 5.61 ms per loop
while 1 比 while true 快很多,原因是在 python2.x 中,True 是一個全局變量,而非關(guān)鍵字。
14.使用**而不是 pow
1%timeit -n 10000 c = pow(2,20)
2%timeit -n 10000 c = 2**2010000 loops, best of 3: 284 ns per loop10000 loops, best of 3: 16.9 ns per loop
**就是快10倍以上!
15.使用 cProfile, cStringIO 和 cPickle 等用c實現(xiàn)相同功能(分別對應(yīng)profile, StringIO, pickle)的包
1import cPickle
2import pickle
3a = range(10000)
4%timeit -n 100 x = cPickle.dumps(a)
5%timeit -n 100 x = pickle.dumps(a)
6100 loops, best of 3: 1.58 ms per loop
7100 loops, best of 3: 17 ms per loop
由c實現(xiàn)的包,速度快10倍以上!
16.使用最佳的反序列化方式
下面比較了 eval, cPickle, json 方式三種對相應(yīng)字符串反序列化的效率:
1import json
2import cPickle
3a = range(10000)
4s1 = str(a)
5s2 = cPickle.dumps(a)
6s3 = json.dumps(a)
7%timeit -n 100 x = eval(s1)
8%timeit -n 100 x = cPickle.loads(s2)
9%timeit -n 100 x = json.loads(s3)
10100 loops, best of 3: 16.8 ms per loop
11100 loops, best of 3: 2.02 ms per loop
12100 loops, best of 3: 798 μs per loop
可見 json 比 cPickle 快近3倍,比 eval 快20多倍。
17.使用C擴(kuò)展(Extension)
目前主要有 CPython(python最常見的實現(xiàn)的方式)原生API, ctypes,Cython,cffi三種方式,它們的作用是使得 Python 程序可以調(diào)用由C編譯成的動態(tài)鏈接庫,其特點分別是:
CPython 原生 API: 通過引入 Python.h 頭文件,對應(yīng)的C程序中可以直接使用Python 的數(shù)據(jù)結(jié)構(gòu)。實現(xiàn)過程相對繁瑣,但是有比較大的適用范圍。
ctypes: 通常用于封裝(wrap)C程序,讓純 Python 程序調(diào)用動態(tài)鏈接庫(Windows 中的 dll 或 Unix 中的 so 文件)中的函數(shù)。如果想要在 python 中使用已經(jīng)有C類庫,使用 ctypes 是很好的選擇,有一些基準(zhǔn)測試下,python2+ctypes 是性能最好的方式。
Cython: Cython 是 CPython 的超集,用于簡化編寫C擴(kuò)展的過程。Cython 的優(yōu)點是語法簡潔,可以很好地兼容 numpy 等包含大量C擴(kuò)展的庫。Cython 的使得場景一般是針對項目中某個算法或過程的優(yōu)化。在某些測試中,可以有幾百倍的性能提升。
cffi: cffi 的就是 ctypes 在 pypy(詳見下文)中的實現(xiàn),同進(jìn)也兼容 CPython。cffi提供了在 python 使用C類庫的方式,可以直接在 python 代碼中編寫C代碼,同時支持鏈接到已有的C類庫。
使用這些優(yōu)化方式一般是針對已有項目性能瓶頸模塊的優(yōu)化,可以在少量改動原有項目的情況下大幅度地提高整個程序的運(yùn)行效率。
18.并行編程
因為 GIL 的存在,Python 很難充分利用多核 CPU 的優(yōu)勢。但是,可以通過內(nèi)置的模塊 multiprocessing 實現(xiàn)下面幾種并行模式:
多進(jìn)程:對于 CPU 密集型的程序,可以使用 multiprocessing 的 Process,Pool 等封裝好的類,通過多進(jìn)程的方式實現(xiàn)并行計算。但是因為進(jìn)程中的通信成本比較大,對于進(jìn)程之間需要大量數(shù)據(jù)交互的程序效率未必有大的提高。
多線程:對于 IO 密集型的程序,multiprocessing.dummy 模塊使用 multiprocessing 的接口封裝 threading,使得多線程編程也變得非常輕松(比如可以使用 Pool 的 map 接口,簡潔高效)。
分布式:multiprocessing 中的 Managers 類提供了可以在不同進(jìn)程之共享數(shù)據(jù)的方式,可以在此基礎(chǔ)上開發(fā)出分布式的程序。
不同的業(yè)務(wù)場景可以選擇其中的一種或幾種的組合實現(xiàn)程序性能的優(yōu)化。
19.終級大殺器:PyPy
PyPy 是用 RPython(CPython 的子集)實現(xiàn)的 Python,根據(jù)官網(wǎng)的基準(zhǔn)測試數(shù)據(jù),它比 CPython 實現(xiàn)的 Python 要快6倍以上。快的原因是使用了 Just-in-Time(JIT)編譯器,即動態(tài)編譯器,與靜態(tài)編譯器(如gcc,javac等)不同,它是利用程序運(yùn)行的過程的數(shù)據(jù)進(jìn)行優(yōu)化。由于歷史原因,目前 pypy 中還保留著 GIL,不過正在進(jìn)行的 STM 項目試圖將 PyPy 變成沒有 GIL 的 Python。
如果 python 程序中含有C擴(kuò)展(非cffi的方式),JIT 的優(yōu)化效果會大打折扣,甚至比 CPython 慢(比 Numpy)。所以在 PyPy 中最好用純 Python 或使用 cffi 擴(kuò)展。
隨著 STM,Numpy 等項目的完善,相信 PyPy 將會替代 CPython。
20.使用性能分析工具
除了上面在 ipython 使用到的 timeit 模塊,還有 cProfile。cProfile 的使用方式也非常簡單: python -m cProfile filename.py,filename.py 是要運(yùn)行程序的文件名,可以在標(biāo)準(zhǔn)輸出中看到每一個函數(shù)被調(diào)用的次數(shù)和運(yùn)行的時間,從而找到程序的性能瓶頸,然后可以有針對性地優(yōu)化。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11