
人臉識別中的機器學習
機器學習的一個主要應用領域是對客觀對象的識別,也稱為模式識別----目的是賦予機器類似生物的信息識別和處理能力。而機器視覺研究的是如何用機器代替人眼來感知外部的世界,測量和識別外部對象,并作出正確的判斷。對圖像的不同特征來編制專門的算法進行處理----OpenCV 廣泛應用于人機互動、物體識別、圖像分割、人臉識別、動作識別、運動跟蹤、機器人、運動分析、機器視覺、結構分析、自動汽車駕駛等領域。
一個完整的人臉識別系統(tǒng)包括:人臉檢測、關鍵點提取、人臉對齊、人臉規(guī)整、人臉分類、識別策略等模塊。
Haar cascade 實現(xiàn)代碼如下:
[python] view plain copy
# -*- coding: utf-8 -*-
from numpy import *
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('E:\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt_tree.xml')
img = cv2.imread('mypicture.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 識別輸入圖片中的人臉對象.返回對象的矩形尺寸
# 函數原型detectMultiScale(gray, 1.2,3,CV_HAAR_SCALE_IMAGE,Size(30, 30))
# gray需要識別的圖片
# 1.2:表示每次圖像尺寸減小的比例
# 3:表示每一個目標至少要被檢測到4次才算是真的目標(因為周圍的像素和不同的窗口大小都可以檢測到人臉)
# CV_HAAR_SCALE_IMAGE表示不是縮放分類器來檢測,而是縮放圖像,Size(30, 30)為目標的最小最大尺寸
# faces:表示檢測到的人臉目標序列
faces = face_cascade.detectMultiScale(gray, 1.2, 3)
for (x,y,w,h) in faces:
img2 = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),4)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("paulwalker.head.jpg", img) # 保存圖片
LBP cascade 的實現(xiàn)代碼如下:
[python] view plain copy
# -*- coding: utf-8 -*-
from numpy import *
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('E:\\opencv\\sources\\data\\lbpcascades\\lbpcascade_frontalface.xml')
img = cv2.imread('snapshot0001.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.2, 3)
for (x,y,w,h) in faces:
img2 = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),4)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("paulwalker.head.jpg", img) # 保存圖片
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數據處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數據庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數據分析師:表結構數據 “獲取 - 加工 - 使用” 全流程的賦能者 表結構數據(如數據庫表、Excel 表、CSV 文件)是企業(yè)數字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數據分析師:解鎖表結構數據特征價值的專業(yè)核心 表結構數據(以 “行 - 列” 規(guī)范存儲的結構化數據,如數據庫表、Excel 表、 ...
2025-09-17Excel 導入數據含缺失值?詳解 dropna 函數的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數據時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數據分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數據差異是否 “ ...
2025-09-16CDA 數據分析師:掌控表格結構數據全功能周期的專業(yè)操盤手 表格結構數據(以 “行 - 列” 存儲的結構化數據,如 Excel 表、數據 ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數據分析師:激活表格結構數據價值的核心操盤手 表格結構數據(如 Excel 表格、數據庫表)是企業(yè)最基礎、最核心的數據形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數據爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數據的科學計數法問題 為幫助 Python 數據從業(yè)者解決pd.read_csv讀取長浮點數據時的科學計數法問題 ...
2025-09-12CDA 數據分析師:業(yè)務數據分析步驟的落地者與價值優(yōu)化者 業(yè)務數據分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數據把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數據驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數據分析師與戰(zhàn)略 / 業(yè)務數據分析:概念辨析與協(xié)同價值 在數據驅動決策的體系中,“戰(zhàn)略數據分析”“業(yè)務數據分析” 是企業(yè) ...
2025-09-11Excel 數據聚類分析:從操作實踐到業(yè)務價值挖掘 在數據分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數據中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數據解讀到決策支撐的價值導向 統(tǒng)計模型作為數據分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10