
簡(jiǎn)單易學(xué)的機(jī)器學(xué)習(xí)算法—譜聚類(Spectal Clustering)
一、復(fù)雜網(wǎng)絡(luò)中的一些基本概念
1、復(fù)雜網(wǎng)絡(luò)的表示
在復(fù)雜網(wǎng)絡(luò)的表示中,復(fù)雜網(wǎng)絡(luò)可以建模成一個(gè)圖,其中,V表示網(wǎng)絡(luò)中的節(jié)點(diǎn)的集合,E表示的是連接的集合。在復(fù)雜網(wǎng)絡(luò)中,復(fù)雜網(wǎng)絡(luò)可以是無(wú)向圖、有向圖、加權(quán)圖或者超圖。
2、網(wǎng)絡(luò)簇結(jié)構(gòu)
網(wǎng)絡(luò)簇結(jié)構(gòu)(network cluster structure)也稱為網(wǎng)絡(luò)社團(tuán)結(jié)構(gòu)(network community structure),是復(fù)雜網(wǎng)絡(luò)中最普遍和最重要的拓?fù)鋵傩灾?。網(wǎng)絡(luò)簇是整個(gè)網(wǎng)絡(luò)中的稠密連接分支,具有同簇內(nèi)部節(jié)點(diǎn)之間相互連接密集,不同簇的節(jié)點(diǎn)之間相互連接稀疏的特征。
3、復(fù)雜網(wǎng)絡(luò)的分類
復(fù)雜網(wǎng)絡(luò)主要分為:隨機(jī)網(wǎng)絡(luò),小世界網(wǎng)絡(luò)和無(wú)標(biāo)度網(wǎng)絡(luò)。
二、譜方法介紹
1、譜方法的思想
在譜聚類中定義了“截”函數(shù)的概念,當(dāng)一個(gè)網(wǎng)絡(luò)被劃分成為兩個(gè)子網(wǎng)絡(luò)時(shí),“截”即指子網(wǎng)間的連接密度。譜聚類的目的就是要找到一種合理的分割,使得分割后形成若干子圖,連接不同的子圖的邊的權(quán)重盡可能低,即“截”最小,同子圖內(nèi)的邊的權(quán)重盡可能高。
2、“截”函數(shù)的具體表現(xiàn)形式
“截”表示的是子網(wǎng)間的密度,即邊比較少。以二分為例,將圖聚類成兩個(gè)類:S類和T類。假設(shè)用來(lái)表示圖的劃分,我們需要的結(jié)果為:
其中表示的是類別S和T之間的權(quán)重。對(duì)于K個(gè)不同的類別
,優(yōu)化的目標(biāo)為:
3、基本“截”函數(shù)的弊端
對(duì)于上述的“截”函數(shù),最終會(huì)導(dǎo)致不好的分割,如二分類問(wèn)題:
上述的“截”函數(shù)通常會(huì)將圖分割成一個(gè)點(diǎn)和其余n-1個(gè)點(diǎn)。
4、其他的“截”函數(shù)的表現(xiàn)形式
其中表示A類中包含的頂點(diǎn)的數(shù)目
三、Laplacian矩陣
1、Laplacian矩陣的定義
其中,d為圖的度矩陣,a為圖的鄰接矩陣。
2、度矩陣的定義
對(duì)于一個(gè)有n個(gè)頂點(diǎn)的圖,其鄰接矩陣為:
其中。
3、Laplacian矩陣的性質(zhì)
Laplacian矩陣;L是對(duì)稱半正定矩陣;
性質(zhì)3的證明:
4、不同的Laplacian矩陣
四、Laplacian矩陣與譜聚類中的優(yōu)化函數(shù)的關(guān)系
1、由Laplacian矩陣到“截”函數(shù)
對(duì)于二個(gè)類別的聚類問(wèn)題,優(yōu)化的目標(biāo)函數(shù)為:
其中,表示的是頂點(diǎn)的數(shù)目,對(duì)于確定的圖來(lái)說(shuō)是個(gè)常數(shù)。由上述的推導(dǎo)可知,由
推導(dǎo)出了
,由此可知:Laplacian矩陣與有優(yōu)化的目標(biāo)函數(shù)
之間存在密切的聯(lián)系。
2、新的目標(biāo)函數(shù)
由上式可得:
其中
3、轉(zhuǎn)化到Laplacian矩陣的求解
五、從二類別聚類到多類別聚類1、二類別聚類
2、多類別聚類
基于以上的分析,譜聚類的基本過(guò)程為:
對(duì)于給定的圖,求圖的度矩陣d和鄰接矩陣a;
計(jì)算圖的Laplacian矩陣;
對(duì)Laplacian矩陣進(jìn)行特征值分解,取其前k個(gè)特征值對(duì)應(yīng)的特征向量,構(gòu)成的特征向量矩陣;
利用K-Means聚類算法對(duì)上述的的特征向量矩陣進(jìn)行聚類,每一行代表一個(gè)樣本點(diǎn)。
2、利用相似度矩陣的構(gòu)造方法
注意:在第一種方法中,求解的是Laplacian矩陣的前個(gè)最小特征值對(duì)應(yīng)的特征向量,在第二種方法中,求解的是Laplacian矩陣的前K個(gè)最大特征值對(duì)應(yīng)的特征向量
七、實(shí)驗(yàn)代碼
1、自己實(shí)現(xiàn)的一個(gè)
[python] view plain copy 在CODE上查看代碼片派生到我的代碼片
#coding:UTF-8
'''''
Created on 2015年5月12日
@author: zhaozhiyong
'''
from __future__ import division
import scipy.io as scio
from scipy import sparse
from scipy.sparse.linalg.eigen import arpack#這里只能這么做,不然始終找不到函數(shù)eigs
from numpy import *
def spectalCluster(data, sigma, num_clusters):
print "將鄰接矩陣轉(zhuǎn)換成相似矩陣"
#先完成sigma != 0
print "Fixed-sigma譜聚類"
data = sparse.csc_matrix.multiply(data, data)
data = -data / (2 * sigma * sigma)
S = sparse.csc_matrix.expm1(data) + sparse.csc_matrix.multiply(sparse.csc_matrix.sign(data), sparse.csc_matrix.sign(data))
#轉(zhuǎn)換成Laplacian矩陣
print "將相似矩陣轉(zhuǎn)換成Laplacian矩陣"
D = S.sum(1)#相似矩陣是對(duì)稱矩陣
D = sqrt(1 / D)
n = len(D)
D = D.T
D = sparse.spdiags(D, 0, n, n)
L = D * S * D
#求特征值和特征向量
print "求特征值和特征向量"
vals, vecs = arpack.eigs(L, k=num_clusters,tol=0,which="LM")
# 利用k-Means
print "利用K-Means對(duì)特征向量聚類"
#對(duì)vecs做正規(guī)化
sq_sum = sqrt(multiply(vecs,vecs).sum(1))
m_1, m_2 = shape(vecs)
for i in xrange(m_1):
for j in xrange(m_2):
vecs[i,j] = vecs[i,j]/sq_sum[i]
myCentroids, clustAssing = kMeans(vecs, num_clusters)
for i in xrange(shape(clustAssing)[0]):
print clustAssing[i,0]
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
def kMeans(dataSet, k):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points to a centroid, also holds SE of each point
centroids = randCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf; minIndex = -1
for j in range(k):
distJI = distEclud(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
#print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment
if __name__ == '__main__':
# 導(dǎo)入數(shù)據(jù)集
matf = 'E://data_sc//corel_50_NN_sym_distance.mat'
dataDic = scio.loadmat(matf)
data = dataDic['A']
# 譜聚類的過(guò)程
spectalCluster(data, 20, 18)
2、網(wǎng)上提供的一個(gè)Matlab代碼
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
function [cluster_labels evd_time kmeans_time total_time] = sc(A, sigma, num_clusters)
%SC Spectral clustering using a sparse similarity matrix (t-nearest-neighbor).
%
% Input : A : N-by-N sparse distance matrix, where
% N is the number of data
% sigma : sigma value used in computing similarity,
% if 0, apply self-tunning technique
% num_clusters : number of clusters
%
% Output : cluster_labels : N-by-1 vector containing cluster labels
% evd_time : running time for eigendecomposition
% kmeans_time : running time for k-means
% total_time : total running time
%
% Convert the sparse distance matrix to a sparse similarity matrix,
% where S = exp^(-(A^2 / 2*sigma^2)).
% Note: This step can be ignored if A is sparse similarity matrix.
%
disp('Converting distance matrix to similarity matrix...');
tic;
n = size(A, 1);
if (sigma == 0) % Selftuning spectral clustering
% Find the count of nonzero for each column
disp('Selftuning spectral clustering...');
col_count = sum(A~=0, 1)';
col_sum = sum(A, 1)';
col_mean = col_sum ./ col_count;
[x y val] = find(A);
A = sparse(x, y, -val.*val./col_mean(x)./col_mean(y)./2);
clear col_count col_sum col_mean x y val;
else % Fixed-sigma spectral clustering
disp('Fixed-sigma spectral clustering...');
A = A.*A;
A = -A/(2*sigma*sigma);
end
% Do exp function sequentially because of memory limitation
num = 2000;
num_iter = ceil(n/num);
S = sparse([]);
for i = 1:num_iter
start_index = 1 + (i-1)*num;
end_index = min(i*num, n);
S1 = spfun(@exp, A(:,start_index:end_index)); % sparse exponential func
S = [S S1];
clear S1;
end
clear A;
toc;
%
% Do laplacian, L = D^(-1/2) * S * D^(-1/2)
%
disp('Doing Laplacian...');
D = sum(S, 2) + (1e-10);
D = sqrt(1./D); % D^(-1/2)
D = spdiags(D, 0, n, n);
L = D * S * D;
clear D S;
time1 = toc;
%
% Do eigendecomposition, if L =
% D^(-1/2) * S * D(-1/2) : set 'LM' (Largest Magnitude), or
% I - D^(-1/2) * S * D(-1/2): set 'SM' (Smallest Magnitude).
%
disp('Performing eigendecomposition...');
OPTS.disp = 0;
[V, val] = eigs(L, num_clusters, 'LM', OPTS);
time2 = toc;
%
% Do k-means
%
disp('Performing kmeans...');
% Normalize each row to be of unit length
sq_sum = sqrt(sum(V.*V, 2)) + 1e-20;
U = V ./ repmat(sq_sum, 1, num_clusters);
clear sq_sum V;
cluster_labels = k_means(U, [], num_clusters);
total_time = toc;
%
% Calculate and show time statistics
%
evd_time = time2 - time1
kmeans_time = total_time - time2
total_time
disp('Finished!');
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
function cluster_labels = k_means(data, centers, num_clusters)
%K_MEANS Euclidean k-means clustering algorithm.
%
% Input : data : N-by-D data matrix, where N is the number of data,
% D is the number of dimensions
% centers : K-by-D matrix, where K is num_clusters, or
% 'random', random initialization, or
% [], empty matrix, orthogonal initialization
% num_clusters : Number of clusters
%
% Output : cluster_labels : N-by-1 vector of cluster assignment
%
% Reference: Dimitrios Zeimpekis, Efstratios Gallopoulos, 2006.
% http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/
%
% Parameter setting
%
iter = 0;
qold = inf;
threshold = 0.001;
%
% Check if with initial centers
%
if strcmp(centers, 'random')
disp('Random initialization...');
centers = random_init(data, num_clusters);
elseif isempty(centers)
disp('Orthogonal initialization...');
centers = orth_init(data, num_clusters);
end
%
% Double type is required for sparse matrix multiply
%
data = double(data);
centers = double(centers);
%
% Calculate the distance (square) between data and centers
%
n = size(data, 1);
x = sum(data.*data, 2)';
X = x(ones(num_clusters, 1), :);
y = sum(centers.*centers, 2);
Y = y(:, ones(n, 1));
P = X + Y - 2*centers*data';
%
% Main program
%
while 1
iter = iter + 1;
% Find the closest cluster for each data point
[val, ind] = min(P, [], 1);
% Sum up data points within each cluster
P = sparse(ind, 1:n, 1, num_clusters, n);
centers = P*data;
% Size of each cluster, for cluster whose size is 0 we keep it empty
cluster_size = P*ones(n, 1);
% For empty clusters, initialize again
zero_cluster = find(cluster_size==0);
if length(zero_cluster) > 0
disp('Zero centroid. Initialize again...');
centers(zero_cluster, :)= random_init(data, length(zero_cluster));
cluster_size(zero_cluster) = 1;
end
% Update centers
centers = spdiags(1./cluster_size, 0, num_clusters, num_clusters)*centers;
% Update distance (square) to new centers
y = sum(centers.*centers, 2);
Y = y(:, ones(n, 1));
P = X + Y - 2*centers*data';
% Calculate objective function value
qnew = sum(sum(sparse(ind, 1:n, 1, size(P, 1), size(P, 2)).*P));
mesg = sprintf('Iteration %d:\n\tQold=%g\t\tQnew=%g', iter, full(qold), full(qnew));
disp(mesg);
% Check if objective function value is less than/equal to threshold
if threshold >= abs((qnew-qold)/qold)
mesg = sprintf('\nkmeans converged!');
disp(mesg);
break;
end
qold = qnew;
end
cluster_labels = ind';
%-----------------------------------------------------------------------------
function init_centers = random_init(data, num_clusters)
%RANDOM_INIT Initialize centroids choosing num_clusters rows of data at random
%
% Input : data : N-by-D data matrix, where N is the number of data,
% D is the number of dimensions
% num_clusters : Number of clusters
%
% Output: init_centers : K-by-D matrix, where K is num_clusters
rand('twister', sum(100*clock));
init_centers = data(ceil(size(data, 1)*rand(1, num_clusters)), :);
function init_centers = orth_init(data, num_clusters)
%ORTH_INIT Initialize orthogonal centers for k-means clustering algorithm.
%
% Input : data : N-by-D data matrix, where N is the number of data,
% D is the number of dimensions
% num_clusters : Number of clusters
%
% Output: init_centers : K-by-D matrix, where K is num_clusters
%
% Find the num_clusters centers which are orthogonal to each other
%
Uniq = unique(data, 'rows'); % Avoid duplicate centers
num = size(Uniq, 1);
first = ceil(rand(1)*num); % Randomly select the first center
init_centers = zeros(num_clusters, size(data, 2)); % Storage for centers
init_centers(1, :) = Uniq(first, :);
Uniq(first, :) = [];
c = zeros(num-1, 1); % Accumalated orthogonal values to existing centers for non-centers
% Find the rest num_clusters-1 centers
for j = 2:num_clusters
c = c + abs(Uniq*init_centers(j-1, :)');
[minimum, i] = min(c); % Select the most orthogonal one as next center
init_centers(j, :) = Uniq(i, :);
Uniq(i, :) = [];
c(i) = [];
end
clear c Uniq;
個(gè)人的一點(diǎn)認(rèn)識(shí):譜聚類的過(guò)程相當(dāng)于先進(jìn)行一個(gè)非線性的降維,然后在這樣的低維空間中再利用聚類的方法進(jìn)行聚類。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10