99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁(yè)精彩閱讀簡(jiǎn)單易學(xué)的機(jī)器學(xué)習(xí)算法—譜聚類(Spectal Clustering)
簡(jiǎn)單易學(xué)的機(jī)器學(xué)習(xí)算法—譜聚類(Spectal Clustering)
2017-03-28
收藏

簡(jiǎn)單易學(xué)的機(jī)器學(xué)習(xí)算法—譜聚類(Spectal Clustering)

一、復(fù)雜網(wǎng)絡(luò)中的一些基本概念

1、復(fù)雜網(wǎng)絡(luò)的表示

在復(fù)雜網(wǎng)絡(luò)的表示中,復(fù)雜網(wǎng)絡(luò)可以建模成一個(gè)圖,其中,V表示網(wǎng)絡(luò)中的節(jié)點(diǎn)的集合,E表示的是連接的集合。在復(fù)雜網(wǎng)絡(luò)中,復(fù)雜網(wǎng)絡(luò)可以是無(wú)向圖、有向圖、加權(quán)圖或者超圖。

2、網(wǎng)絡(luò)簇結(jié)構(gòu)

網(wǎng)絡(luò)簇結(jié)構(gòu)(network cluster structure)也稱為網(wǎng)絡(luò)社團(tuán)結(jié)構(gòu)(network community structure),是復(fù)雜網(wǎng)絡(luò)中最普遍和最重要的拓?fù)鋵傩灾?。網(wǎng)絡(luò)簇是整個(gè)網(wǎng)絡(luò)中的稠密連接分支,具有同簇內(nèi)部節(jié)點(diǎn)之間相互連接密集,不同簇的節(jié)點(diǎn)之間相互連接稀疏的特征

3、復(fù)雜網(wǎng)絡(luò)的分類

復(fù)雜網(wǎng)絡(luò)主要分為:隨機(jī)網(wǎng)絡(luò),小世界網(wǎng)絡(luò)和無(wú)標(biāo)度網(wǎng)絡(luò)。

二、譜方法介紹

1、譜方法的思想

在復(fù)雜網(wǎng)絡(luò)的網(wǎng)絡(luò)簇結(jié)構(gòu)存在著同簇節(jié)點(diǎn)之間連接密集,不同簇節(jié)點(diǎn)之間連接稀疏的特征,是否可以根據(jù)這樣的特征對(duì)網(wǎng)絡(luò)中的節(jié)點(diǎn)進(jìn)行聚類,使得同類節(jié)點(diǎn)之間的連接密集,不同類別節(jié)點(diǎn)之間的連接稀疏?

在譜聚類中定義了“截”函數(shù)的概念,當(dāng)一個(gè)網(wǎng)絡(luò)被劃分成為兩個(gè)子網(wǎng)絡(luò)時(shí),“截”即指子網(wǎng)間的連接密度。譜聚類的目的就是要找到一種合理的分割,使得分割后形成若干子圖,連接不同的子圖的邊的權(quán)重盡可能低,即“截”最小,同子圖內(nèi)的邊的權(quán)重盡可能高。

2、“截”函數(shù)的具體表現(xiàn)形式

“截”表示的是子網(wǎng)間的密度,即邊比較少。以二分為例,將圖聚類成兩個(gè)類:S類和T類。假設(shè)用來(lái)表示圖的劃分,我們需要的結(jié)果為:

其中表示的是類別S和T之間的權(quán)重。對(duì)于K個(gè)不同的類別,優(yōu)化的目標(biāo)為:

3、基本“截”函數(shù)的弊端

對(duì)于上述的“截”函數(shù),最終會(huì)導(dǎo)致不好的分割,如二分類問(wèn)題:

上述的“截”函數(shù)通常會(huì)將圖分割成一個(gè)點(diǎn)和其余n-1個(gè)點(diǎn)。

4、其他的“截”函數(shù)的表現(xiàn)形式

為了能夠讓每個(gè)類都有合理的大小,目標(biāo)函數(shù)中應(yīng)該使得足夠大,則提出了或者

其中表示A類中包含的頂點(diǎn)的數(shù)目

三、Laplacian矩陣

1、Laplacian矩陣的定義

拉普拉斯矩陣(Laplacian Matrix),也稱為基爾霍夫矩陣,是圖的一種矩陣表示形式。
對(duì)于一個(gè)有n個(gè)頂點(diǎn)的圖,其Laplacian矩陣定義為:

其中,d為圖的度矩陣,a為圖的鄰接矩陣。

2、度矩陣的定義

度矩陣是一個(gè)對(duì)角矩陣,主角線上的值由對(duì)應(yīng)的頂點(diǎn)的度組成。

對(duì)于一個(gè)有n個(gè)頂點(diǎn)的圖,其鄰接矩陣為:

其度矩陣為:

其中

3、Laplacian矩陣的性質(zhì)

Laplacian矩陣;L是對(duì)稱半正定矩陣;

  1. Laplacian矩陣L的最小特征值是0,相應(yīng)的特征向量是I;
  2. Laplacian矩陣L有n個(gè)非負(fù)實(shí)特征值:,且對(duì)于任何一個(gè)實(shí)向量f,都有下面的式子成立:

性質(zhì)3的證明:

4、不同的Laplacian矩陣

除了上述的拉普拉斯矩陣,還有規(guī)范化的Laplacian矩陣形式:

四、Laplacian矩陣與譜聚類中的優(yōu)化函數(shù)的關(guān)系

1、由Laplacian矩陣到“截”函數(shù)

對(duì)于二個(gè)類別的聚類問(wèn)題,優(yōu)化的目標(biāo)函數(shù)為:

定義向量,且

而已知:,則

其中,表示的是頂點(diǎn)的數(shù)目,對(duì)于確定的圖來(lái)說(shuō)是個(gè)常數(shù)。由上述的推導(dǎo)可知,由推導(dǎo)出了,由此可知:Laplacian矩陣與有優(yōu)化的目標(biāo)函數(shù)之間存在密切的聯(lián)系。

2、新的目標(biāo)函數(shù)

由上式可得:

由于是個(gè)常數(shù),故要求的最小值,即求的最小值。則新的目標(biāo)函數(shù)為:
 

其中

3、轉(zhuǎn)化到Laplacian矩陣的求解

假設(shè)是Laplacian矩陣L的特征值,F(xiàn)是特征對(duì)應(yīng)的特征向量,則有:

在上式的兩端同時(shí)左乘

已知,則,上式可以轉(zhuǎn)化為:

要求,即只需求得最小特征。由Laplacian矩陣的性質(zhì)可知,Laplacian矩陣的最小特征值為0。由Rayleigh-Ritz理論,可以取第2小特征值。

五、從二類別聚類到多類別聚類1、二類別聚類


對(duì)于求解出來(lái)的特征向量中的每一個(gè)分量,根據(jù)每個(gè)分量的值來(lái)判斷對(duì)應(yīng)的點(diǎn)所屬的類別:

2、多類別聚類

對(duì)于求出來(lái)的前K個(gè)特征向量,可以利用K-Means聚類方法對(duì)其進(jìn)行聚類,若前K個(gè)特征向量為,這樣便由特征向量構(gòu)成如下的特征向量矩陣:

特征向量矩陣中的每一行最為一個(gè)樣本,利用K-Means聚類方法對(duì)其進(jìn)行聚類。

六、譜聚類的過(guò)程

1、基本的結(jié)構(gòu)

基于以上的分析,譜聚類的基本過(guò)程為:

對(duì)于給定的圖,求圖的度矩陣d和鄰接矩陣a;

計(jì)算圖的Laplacian矩陣;

對(duì)Laplacian矩陣進(jìn)行特征值分解,取其前k個(gè)特征值對(duì)應(yīng)的特征向量,構(gòu)成特征向量矩陣;

利用K-Means聚類算法對(duì)上述的特征向量矩陣進(jìn)行聚類,每一行代表一個(gè)樣本點(diǎn)。

2、利用相似度矩陣的構(gòu)造方法

上述的方法是通過(guò)圖的度矩陣D和鄰接矩陣A來(lái)構(gòu)造Laplacian矩陣,也可以通過(guò)相似度矩陣的方法構(gòu)造Laplacian矩陣,其方法如下:
相似度矩陣是由權(quán)值矩陣得到:

其中

再利用相似度矩陣S構(gòu)造Laplacian矩陣:

其中D為相似度矩陣S的度矩陣。

注意:在第一種方法中,求解的是Laplacian矩陣的前個(gè)最小特征值對(duì)應(yīng)的特征向量,在第二種方法中,求解的是Laplacian矩陣的前K個(gè)最大特征值對(duì)應(yīng)的特征向量

七、實(shí)驗(yàn)代碼

1、自己實(shí)現(xiàn)的一個(gè)

[python] view plain copy 在CODE上查看代碼片派生到我的代碼片
#coding:UTF-8  
'''''
Created on 2015年5月12日
 
@author: zhaozhiyong
'''  
from __future__ import division  
import scipy.io as scio  
from scipy import sparse  
from scipy.sparse.linalg.eigen import arpack#這里只能這么做,不然始終找不到函數(shù)eigs  
from numpy import *  
 
 
def spectalCluster(data, sigma, num_clusters):  
    print "將鄰接矩陣轉(zhuǎn)換成相似矩陣"  
    #先完成sigma != 0  
    print "Fixed-sigma譜聚類"  
    data = sparse.csc_matrix.multiply(data, data)  
 
    data = -data / (2 * sigma * sigma)  
      
    S = sparse.csc_matrix.expm1(data) + sparse.csc_matrix.multiply(sparse.csc_matrix.sign(data), sparse.csc_matrix.sign(data))     
      
    #轉(zhuǎn)換成Laplacian矩陣  
    print "將相似矩陣轉(zhuǎn)換成Laplacian矩陣"  
    D = S.sum(1)#相似矩陣是對(duì)稱矩陣  
    D = sqrt(1 / D)  
    n = len(D)  
    D = D.T  
    D = sparse.spdiags(D, 0, n, n)  
    L = D * S * D  
      
    #求特征值和特征向量  
    print "求特征值和特征向量"  
    vals, vecs = arpack.eigs(L, k=num_clusters,tol=0,which="LM")    
      
    # 利用k-Means  
    print "利用K-Means對(duì)特征向量聚類"  
    #對(duì)vecs做正規(guī)化  
    sq_sum = sqrt(multiply(vecs,vecs).sum(1))  
    m_1, m_2 = shape(vecs)  
    for i in xrange(m_1):  
        for j in xrange(m_2):  
            vecs[i,j] = vecs[i,j]/sq_sum[i]  
      
    myCentroids, clustAssing = kMeans(vecs, num_clusters)  
      
    for i in xrange(shape(clustAssing)[0]):  
        print clustAssing[i,0]  
      
 
def randCent(dataSet, k):  
    n = shape(dataSet)[1]  
    centroids = mat(zeros((k,n)))#create centroid mat  
    for j in range(n):#create random cluster centers, within bounds of each dimension  
        minJ = min(dataSet[:,j])   
        rangeJ = float(max(dataSet[:,j]) - minJ)  
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))  
    return centroids  
 
def distEclud(vecA, vecB):  
    return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)  
 
def kMeans(dataSet, k):  
    m = shape(dataSet)[0]  
    clusterAssment = mat(zeros((m,2)))#create mat to assign data points to a centroid, also holds SE of each point  
    centroids = randCent(dataSet, k)  
    clusterChanged = True  
    while clusterChanged:  
        clusterChanged = False  
        for i in range(m):#for each data point assign it to the closest centroid  
            minDist = inf; minIndex = -1  
            for j in range(k):  
                distJI = distEclud(centroids[j,:],dataSet[i,:])  
                if distJI < minDist:  
                    minDist = distJI; minIndex = j  
            if clusterAssment[i,0] != minIndex: clusterChanged = True  
            clusterAssment[i,:] = minIndex,minDist**2  
        #print centroids  
        for cent in range(k):#recalculate centroids  
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster  
            centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean   
    return centroids, clusterAssment  
 
 
if __name__ == '__main__':  
    # 導(dǎo)入數(shù)據(jù)集  
    matf = 'E://data_sc//corel_50_NN_sym_distance.mat'  
    dataDic = scio.loadmat(matf)  
    data = dataDic['A']  
    # 譜聚類的過(guò)程  
    spectalCluster(data, 20, 18)  

2、網(wǎng)上提供的一個(gè)Matlab代碼
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
function [cluster_labels evd_time kmeans_time total_time] = sc(A, sigma, num_clusters)  
%SC Spectral clustering using a sparse similarity matrix (t-nearest-neighbor).  
%  
%   Input  : A              : N-by-N sparse distance matrix, where  
%                             N is the number of data  
%            sigma          : sigma value used in computing similarity,  
%                             if 0, apply self-tunning technique  
%            num_clusters   : number of clusters  
%  
%   Output : cluster_labels : N-by-1 vector containing cluster labels  
%            evd_time       : running time for eigendecomposition  
%            kmeans_time    : running time for k-means  
%            total_time     : total running time  
 
%  
% Convert the sparse distance matrix to a sparse similarity matrix,  
% where S = exp^(-(A^2 / 2*sigma^2)).  
% Note: This step can be ignored if A is sparse similarity matrix.  
%  
disp('Converting distance matrix to similarity matrix...');  
tic;  
n = size(A, 1);  
 
if (sigma == 0) % Selftuning spectral clustering  
  % Find the count of nonzero for each column  
  disp('Selftuning spectral clustering...');  
  col_count = sum(A~=0, 1)';  
  col_sum = sum(A, 1)';  
  col_mean = col_sum ./ col_count;  
  [x y val] = find(A);  
  A = sparse(x, y, -val.*val./col_mean(x)./col_mean(y)./2);  
  clear col_count col_sum col_mean x y val;  
else % Fixed-sigma spectral clustering  
  disp('Fixed-sigma spectral clustering...');  
  A = A.*A;  
  A = -A/(2*sigma*sigma);  
end  
 
% Do exp function sequentially because of memory limitation  
num = 2000;  
num_iter = ceil(n/num);  
S = sparse([]);  
for i = 1:num_iter  
  start_index = 1 + (i-1)*num;  
  end_index = min(i*num, n);  
  S1 = spfun(@exp, A(:,start_index:end_index)); % sparse exponential func  
  S = [S S1];  
  clear S1;  
end  
clear A;  
toc;  
 
%  
% Do laplacian, L = D^(-1/2) * S * D^(-1/2)  
%  
disp('Doing Laplacian...');  
D = sum(S, 2) + (1e-10);  
D = sqrt(1./D); % D^(-1/2)  
D = spdiags(D, 0, n, n);  
L = D * S * D;  
clear D S;  
time1 = toc;  
 
%  
% Do eigendecomposition, if L =  
%   D^(-1/2) * S * D(-1/2)    : set 'LM' (Largest Magnitude), or  
%   I - D^(-1/2) * S * D(-1/2): set 'SM' (Smallest Magnitude).  
%  
disp('Performing eigendecomposition...');  
OPTS.disp = 0;  
[V, val] = eigs(L, num_clusters, 'LM', OPTS);  
time2 = toc;  
 
%  
% Do k-means  
%  
disp('Performing kmeans...');  
% Normalize each row to be of unit length  
sq_sum = sqrt(sum(V.*V, 2)) + 1e-20;  
U = V ./ repmat(sq_sum, 1, num_clusters);  
clear sq_sum V;  
cluster_labels = k_means(U, [], num_clusters);  
total_time = toc;  
 
%  
% Calculate and show time statistics  
%  
evd_time = time2 - time1  
kmeans_time = total_time - time2  
total_time  
disp('Finished!');  

[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
function cluster_labels = k_means(data, centers, num_clusters)  
%K_MEANS Euclidean k-means clustering algorithm.  
%  
%   Input    : data           : N-by-D data matrix, where N is the number of data,  
%                               D is the number of dimensions  
%              centers        : K-by-D matrix, where K is num_clusters, or  
%                               'random', random initialization, or  
%                               [], empty matrix, orthogonal initialization  
%              num_clusters   : Number of clusters  
%  
%   Output   : cluster_labels : N-by-1 vector of cluster assignment  
%  
%   Reference: Dimitrios Zeimpekis, Efstratios Gallopoulos, 2006.  
%              http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/  
 
%  
% Parameter setting  
%  
iter = 0;  
qold = inf;  
threshold = 0.001;  
 
%  
% Check if with initial centers  
%  
if strcmp(centers, 'random')  
  disp('Random initialization...');  
  centers = random_init(data, num_clusters);  
elseif isempty(centers)  
  disp('Orthogonal initialization...');  
  centers = orth_init(data, num_clusters);  
end  
 
%  
% Double type is required for sparse matrix multiply  
%  
data = double(data);  
centers = double(centers);  
 
%  
% Calculate the distance (square) between data and centers  
%  
n = size(data, 1);  
x = sum(data.*data, 2)';  
X = x(ones(num_clusters, 1), :);  
y = sum(centers.*centers, 2);  
Y = y(:, ones(n, 1));  
P = X + Y - 2*centers*data';  
 
%  
% Main program  
%  
while 1  
  iter = iter + 1;  
 
  % Find the closest cluster for each data point  
  [val, ind] = min(P, [], 1);  
  % Sum up data points within each cluster  
  P = sparse(ind, 1:n, 1, num_clusters, n);  
  centers = P*data;  
  % Size of each cluster, for cluster whose size is 0 we keep it empty  
  cluster_size = P*ones(n, 1);  
  % For empty clusters, initialize again  
  zero_cluster = find(cluster_size==0);  
  if length(zero_cluster) > 0  
    disp('Zero centroid. Initialize again...');  
    centers(zero_cluster, :)= random_init(data, length(zero_cluster));  
    cluster_size(zero_cluster) = 1;  
  end  
  % Update centers  
  centers = spdiags(1./cluster_size, 0, num_clusters, num_clusters)*centers;  
 
  % Update distance (square) to new centers  
  y = sum(centers.*centers, 2);  
  Y = y(:, ones(n, 1));  
  P = X + Y - 2*centers*data';  
 
  % Calculate objective function value  
  qnew = sum(sum(sparse(ind, 1:n, 1, size(P, 1), size(P, 2)).*P));  
  mesg = sprintf('Iteration %d:\n\tQold=%g\t\tQnew=%g', iter, full(qold), full(qnew));  
  disp(mesg);  
 
  % Check if objective function value is less than/equal to threshold  
  if threshold >= abs((qnew-qold)/qold)  
    mesg = sprintf('\nkmeans converged!');  
    disp(mesg);  
    break;  
  end  
  qold = qnew;  
end  
 
cluster_labels = ind';  
 
 
%-----------------------------------------------------------------------------  
function init_centers = random_init(data, num_clusters)  
%RANDOM_INIT Initialize centroids choosing num_clusters rows of data at random  
%  
%   Input : data         : N-by-D data matrix, where N is the number of data,  
%                          D is the number of dimensions  
%           num_clusters : Number of clusters  
%  
%   Output: init_centers : K-by-D matrix, where K is num_clusters  
rand('twister', sum(100*clock));  
init_centers = data(ceil(size(data, 1)*rand(1, num_clusters)), :);  
 
function init_centers = orth_init(data, num_clusters)  
%ORTH_INIT Initialize orthogonal centers for k-means clustering algorithm.  
%  
%   Input : data         : N-by-D data matrix, where N is the number of data,  
%                          D is the number of dimensions  
%           num_clusters : Number of clusters  
%  
%   Output: init_centers : K-by-D matrix, where K is num_clusters  
 
%  
% Find the num_clusters centers which are orthogonal to each other  
%  
Uniq = unique(data, 'rows'); % Avoid duplicate centers  
num = size(Uniq, 1);  
first = ceil(rand(1)*num); % Randomly select the first center  
init_centers = zeros(num_clusters, size(data, 2)); % Storage for centers  
init_centers(1, :) = Uniq(first, :);  
Uniq(first, :) = [];  
c = zeros(num-1, 1); % Accumalated orthogonal values to existing centers for non-centers  
% Find the rest num_clusters-1 centers  
for j = 2:num_clusters  
  c = c + abs(Uniq*init_centers(j-1, :)');  
  [minimum, i] = min(c); % Select the most orthogonal one as next center  
  init_centers(j, :) = Uniq(i, :);  
  Uniq(i, :) = [];  
  c(i) = [];  
end  
clear c Uniq;  

個(gè)人的一點(diǎn)認(rèn)識(shí):譜聚類的過(guò)程相當(dāng)于先進(jìn)行一個(gè)非線性降維,然后在這樣的低維空間中再利用聚類的方法進(jìn)行聚類。

數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼

若不方便掃碼,搜微信號(hào):CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個(gè)參數(shù)驗(yàn)證碼對(duì)象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個(gè)配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺(tái)檢測(cè)極驗(yàn)服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時(shí)表示是新驗(yàn)證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說(shuō)明請(qǐng)參見(jiàn):http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計(jì)時(shí)完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請(qǐng)輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請(qǐng)輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }