
簡單易學的機器學習算法—嶺回歸(Ridge Regression)
一、一般線性回歸遇到的問題
在處理復雜的數(shù)據的回歸問題時,普通的線性回歸會遇到一些問題,主要表現(xiàn)在:
預測精度:這里要處理好這樣一對為題,即樣本的數(shù)量和特征的數(shù)量
時,最小二乘回歸會有較小的方差
時,容易產生過擬合
時,最小二乘回歸得不到有意義的結果
模型的解釋能力:如果模型中的特征之間有相互關系,這樣會增加模型的復雜程度,并且對整個模型的解釋能力并沒有提高,這時,我們就要進行特征選擇。
以上的這些問題,主要就是表現(xiàn)在模型的方差和偏差問題上,這樣的關系可以通過下圖說明:
(摘自:機器學習實戰(zhàn))
方差指的是模型之間的差異,而偏差指的是模型預測值和數(shù)據之間的差異。我們需要找到方差和偏差的折中。
二、嶺回歸的概念
在進行特征選擇時,一般有三種方式:
子集選擇
收縮方式(Shrinkage method),又稱為正則化(Regularization)。主要包括嶺回歸個lasso回歸。
維數(shù)縮減
嶺回歸(Ridge Regression)是在平方誤差的基礎上增加正則項
通過確定的值可以使得在方差和偏差之間達到平衡:隨著
的增大,模型方差減小而偏差增大。
對w求導,結果為
令其為0,可求w得的值:
三、實驗的過程
我們去探討一下取不同的對整個模型的影響。
MATLAB代碼
主函數(shù)
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
%% 嶺回歸(Ridge Regression) 數(shù)據分析師培訓
%導入數(shù)據
data = load('abalone.txt');
[m,n] = size(data);
dataX = data(:,1:8);%特征
dataY = data(:,9);%標簽
%標準化
yMeans = mean(dataY);
for i = 1:m
yMat(i,:) = dataY(i,:)-yMeans;
end
xMeans = mean(dataX);
xVars = var(dataX);
for i = 1:m
xMat(i,:) = (dataX(i,:) - xMeans)./xVars;
end
% 運算30次
testNum = 30;
weights = zeros(testNum, n-1);
for i = 1:testNum
w = ridgeRegression(xMat, yMat, exp(i-10));
weights(i,:) = w';
end
% 畫出隨著參數(shù)lam
hold on
axis([-9 20 -1.0 2.5]);
xlabel log(lam);
ylabel weights;
for i = 1:n-1
x = -9:20;
y(1,:) = weights(:,i)';
plot(x,y);
end
嶺回歸求回歸系數(shù)的函數(shù)
[plain] view plain copy 在CODE上查看代碼片派生到我的代碼片
function [ w ] = ridgeRegression( x, y, lam )
xTx = x'*x;
[m,n] = size(xTx);
temp = xTx + eye(m,n)*lam;
if det(temp) == 0
disp('This matrix is singular, cannot do inverse');
end
w = temp^(-1)*x'*y;
end
數(shù)據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經網絡(RNN)家族中,長短期記憶網絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據分析師報考條件詳解與準備指南? ? 在數(shù)據驅動決策的時代浪潮下,CDA 數(shù)據分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據透視表中兩列相乘合計的實用指南? 在數(shù)據分析的日常工作中,數(shù)據透視表憑借其強大的數(shù)據匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據分析師:連接數(shù)據與業(yè)務的價值轉化者? ? 在大數(shù)據與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據查詢到趨勢預判? ? 在數(shù)據驅動決策的時代,預測分析作為挖掘數(shù)據潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據查詢結束后:分析師的收尾工作與價值深化? ? 在數(shù)據分析的全流程中,“query end”(查詢結束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據分析師考試:從報考到取證的全攻略? 在數(shù)字經濟蓬勃發(fā)展的今天,數(shù)據分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據背后的時間軌跡? 在數(shù)據分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據類型:時間維度的精準切片? ? 在數(shù)據的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據分析師認證考試中,Python 作為數(shù)據處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據趨勢與突變分析的有力工具? ? ? 在數(shù)據分析的廣袤領域中,準確捕捉數(shù)據的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據分析師認證作為國內權威的數(shù)據分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網絡(LSTM)作為循環(huán)神經網絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調研數(shù)據中的深度應用? 市場調研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調研數(shù) ...
2025-07-07CDA數(shù)據分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據已成為企業(yè)決策、行業(yè)發(fā)展的核心驅動力,數(shù)據分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據分析師考試作為衡量數(shù)據專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉日期:解鎖數(shù)據處理的關鍵技能? 在數(shù)據處理與分析工作中,數(shù)據格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據分析師視角:從數(shù)據迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據已成為企業(yè)決策的核心驅動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據分析師:開啟數(shù)據職業(yè)發(fā)展新征程? ? 在數(shù)據成為核心生產要素的今天,數(shù)據分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03