99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀厲害了,在Pandas中用SQL來查詢數(shù)據(jù),效率超高
厲害了,在Pandas中用SQL來查詢數(shù)據(jù),效率超高
2022-03-22
收藏
厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

作者:俊欣

來源:關(guān)于數(shù)據(jù)分析與可視化

今天我們繼續(xù)來講一下PandasSQL之間的聯(lián)用,我們其實也可以在Pandas當中使用SQL語句來篩選數(shù)據(jù),通過Pandasql模塊來實現(xiàn)該想法,首先我們來安裝一下該模塊

pip install pandasql

要是你目前正在使用jupyter notebook,也可以這么來下載

!pip install pandasql 

導(dǎo)入數(shù)據(jù)

我們首先導(dǎo)入數(shù)據(jù)

import pandas as pd from pandasql import sqldf
df = pd.read_csv("Dummy_Sales_Data_v1.csv", sep=",")
df.head()

output

厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

我們先對導(dǎo)入的數(shù)據(jù)集做一個初步的探索性分析,

df.info()

output

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
 #   Column               Non-Null Count  Dtype  
---  ------               --------------  ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice(USD) 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 Shipping_Cost(USD) 9999 non-null int64 8 Delivery_Time(Days) 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64  
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB

再開始進一步的數(shù)據(jù)篩選之前,我們再對數(shù)據(jù)集的列名做一個轉(zhuǎn)換,代碼如下

df.rename(columns={"Shipping_Cost(USD)":"ShippingCost_USD", "UnitPrice(USD)":"UnitPrice_USD", "Delivery_Time(Days)":"Delivery_Time_Days"},
          inplace=True)
df.info()

output

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
 #   Column              Non-Null Count  Dtype  
---  ------              --------------  ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice_USD 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 ShippingCost_USD 9999 non-null int64 8 Delivery_Time_Days 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64  
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB

SQL篩選出若干列來

我們先嘗試篩選出OrderIDQuantity、Sales_ManagerStatus等若干列數(shù)據(jù),用SQL語句應(yīng)該是這么來寫的

SELECT OrderID, Quantity, Sales_Manager, 
Status, Shipping_Address, ShippingCost_USD 
FROM df 

Pandas模塊聯(lián)用的時候就這么來寫

query = "SELECT OrderID, Quantity, Sales_Manager,
Status, Shipping_Address, ShippingCost_USD 
FROM df" df_orders = sqldf(query) df_orders.head() 

output

厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

SQL中帶WHERE條件篩選

我們在SQL語句當中添加指定的條件進而來篩選數(shù)據(jù),代碼如下

query = "SELECT * 
        FROM df_orders 
        WHERE Shipping_Address = 'Kenya'" df_kenya = sqldf(query) df_kenya.head() 

output

厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

而要是條件不止一個,則用AND來連接各個條件,代碼如下

query = "SELECT *  FROM df_orders  WHERE Shipping_Address = 'Kenya'  AND Quantity < 40  AND Status IN ('Shipped', 'Delivered')"
df_kenya = sqldf(query)
df_kenya.head() 

output

厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

分組

同理我們可以調(diào)用SQL當中的GROUP BY來對篩選出來的數(shù)據(jù)進行分組,代碼如下

query = "SELECT Shipping_Address,  COUNT(OrderID) AS Orders  FROM df_orders  GROUP BY Shipping_Address"

df_group = sqldf(query)
df_group.head(10) 

output

厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

排序

而排序在SQL當中則是用ORDER BY,代碼如下

query = "SELECT Shipping_Address,  COUNT(OrderID) AS Orders  FROM df_orders  GROUP BY Shipping_Address  ORDER BY Orders"

df_group = sqldf(query)
df_group.head(10) 

output

厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

數(shù)據(jù)合并

我們先創(chuàng)建一個數(shù)據(jù)集,用于后面兩個數(shù)據(jù)集之間的合并,代碼如下

query = "SELECT OrderID,
        Quantity, 
        Product_Code, 
        Product_Category, 
        UnitPrice_USD 
        FROM df" df_products = sqldf(query) df_products.head() 

output

厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

我們這里采用的兩個數(shù)據(jù)集之間的交集,因此是INNER JOIN,代碼如下

query = "SELECT T1.OrderID, 
        T1.Shipping_Address, 
        T2.Product_Category 
        FROM df_orders T1
        INNER JOIN df_products T2
        ON T1.OrderID = T2.OrderID" df_combined = sqldf(query) df_combined.head() 

output

厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

與LIMIT之間的聯(lián)用

SQL當中的LIMIT是用于限制查詢結(jié)果返回的數(shù)量的,我們想看查詢結(jié)果的前10個,代碼如下

query = "SELECT OrderID, Quantity, Sales_Manager,  Status, Shipping_Address, 
ShippingCost_USD FROM df LIMIT 10"

df_orders_limit = sqldf(query)
df_orders_limit 

output

厲害了,在Pandas中用<a href='/map/sql/' style='color:#000;font-size:inherit;'>SQL</a>來查詢數(shù)據(jù),效率超高

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個參數(shù)驗證碼對象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務(wù)器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }