
如何用SPSS檢驗多重共線性_多重共線性處理方法
我也在弄這個 目前用的STATA的coldiag2的方法
雖然之前用spearman相關(guān)系數(shù)看了一下 沒問題
但是coldiag2的條件數(shù)200+ = =
現(xiàn)在打算主成分+人工扔掉一些…
不知大家有什么別的方案嗎
—————–
多重共線性的后果:
整個回歸方程的統(tǒng)計檢驗P<a,但所有偏回歸系數(shù)的檢驗均無統(tǒng)計學(xué)意義。
偏回歸系數(shù)的估計值大小明顯與常識不符,甚至連符號都是相反的。比如擬合結(jié)果表明累計吸煙量越多,個體的壽命就越長。
在專業(yè)知識上可以肯定對應(yīng)變量有影響的因素,在多元回歸分析中卻P>a,不能納入方程
去掉一兩個變量或記錄,方程的回歸系數(shù)值發(fā)生劇烈抖動,非常不穩(wěn)定。
多重共線性的確認(rèn):
做出自變量間的相關(guān)系數(shù)矩陣:如果相關(guān)系數(shù)超過0.9的變量在分析時將會存在共線性問題。在0.8以上可能會有問題。但這種方法只能對共線性作初步的判斷,并不全面。
容忍度(Tolerance):有 Norusis 提出,即以每個自變量作為應(yīng)變量對其他自變量進行回歸分析時得到的殘差比例,大小用1減決定系數(shù)來表示。該指標(biāo)越小,則說明該自變量被其余變量預(yù)測的越精確,共線性可能就越嚴(yán)重。陳希孺等根據(jù)經(jīng)驗得出:如果某個自變量的容忍度小于0.1,則可能存在共線性問題。
方差膨脹因子(Variance inflation factor, VIF): 由Marquardt于1960年提出,實際上就是容忍度的倒數(shù)。
特征根(Eigenvalue):該方法實際上就是對自變量進行主成分分析,如果相當(dāng)多維度的特征根等于0,則可能有比較嚴(yán)重的共線性。
條件指數(shù)(Condition Idex):由Stewart等提出,當(dāng)某些維度的該指標(biāo)數(shù)值大于30時,則能存在共線性。
多重共線性的對策:
增大樣本量,可部分的解決共線性問題
采用多種自變量篩選方法相結(jié)合的方式,建立一個最優(yōu)的逐步回歸方程。
從專業(yè)的角度加以判斷,人為的去除在專業(yè)上比較次要的,或者缺失值比較多,測量誤差比較大的共線性因子。
進行主成分分析,用提取的因子代替原變量進行回歸分析。
進行嶺回歸分析,它可以有效的解決多重共線性問題。
進行通徑分析(Path Analysis),它可以對應(yīng)自變量間的關(guān)系加以精細(xì)的刻畫。Spss可以進行比較基本的通徑分析,但復(fù)雜的模型需要使用SPSS公司的另外一個軟件AMOS來進行。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10