
美國將大數(shù)據(jù)應用于國際學生能力評估計劃(PISA)_數(shù)據(jù)分析師
大數(shù)據(jù)是教育產業(yè)重塑商業(yè)模式,促使政府、商業(yè)組織和社會企業(yè)家通力合作將實證、創(chuàng)意、資源整合起來成就全民終身教育的基礎。因此未來教育界的巨頭將是那些能夠把學術權威與信息和社交網絡的協(xié)同效應結合起來的領軍者。更為重要的是,這將使人們在運用大數(shù)據(jù)的基礎上進行應用創(chuàng)新。這要求體制上的協(xié)同創(chuàng)新,要采取更有進取、更完善的公共政策,來改變目前教育界弊病:工業(yè)化的組織模式、官僚的和以應訴導向的工作方式和策略。
這不僅僅是增加教育透明度和公共責任的問題,甚至可以說這不是主要問題。簡單地把數(shù)據(jù)公布于眾不能改變學生學習,老師授課和學校運作的模式。信息公開并不能自然而然地引領我們運用大數(shù)據(jù)改革教育方法。相反這一做法經常造成民眾和政府在信息的控制和所有權方面的對立情緒。
運用大數(shù)據(jù)實現(xiàn)教育產業(yè)轉型的前提是摒棄我們社會的“只讀”模式。透明和合作并舉。目前的情況是,坐在大辦公樓里一角的某位教育專家制定了規(guī)則,成千上百名學生和老師只能遵從,沒有人知道這些決定是怎么來的。如果我們能分享數(shù)據(jù)、培育民間創(chuàng)新和實驗、開拓創(chuàng)造性文化,大數(shù)據(jù)可以實現(xiàn)大范圍的信任。難怪世界經濟合作與發(fā)展組織(OECD)一項關于成人技能的最新調查顯示:一個人的讀寫能力越好,就越容易信任他人。
協(xié)同消費就是很好的一個印證。如今,我們與陌生人共享他們的汽車,甚至是房子。協(xié)同消費使人人都可以成為小微企業(yè)家,其發(fā)展驅動力在于建立與陌生人的信任。想想我們在商業(yè)世界里的行為,我們在信任他人的基礎上提供信息,心甘情愿地交出信用卡數(shù)據(jù),和各個商業(yè)行業(yè)中可信的陌生人建立聯(lián)系。教育界的數(shù)據(jù)分享離我們還非常遙遠。
但是這應該是我們努力的方向。幾年前我們引入了國際學生能力評估計劃(PISA),一項針對各國15歲青少年可比較技能的全球調研。PISA提供了大量有關教育質量的數(shù)據(jù)。PISA計劃使公共教育政策的制定更加透明、高效,幫助教育力量的分配重獲平衡。在微觀層面,仍存有很多質疑:老師認為這是政府又一個想控制他們的問責工具。那我們該做什么?今年我們實施了“我的PISA”項目,將PISA的分析工具分發(fā)到學?!,F(xiàn)在每個學??梢杂盟c全球各地相似或完全不同的學校進行比較分析。
突然間原有的狀態(tài)發(fā)生了改變;學校開始使用這些數(shù)據(jù)。例如,美國弗吉尼亞州費爾法克斯郡的十所學校的校長和老師們圍繞第一份報告的結論開始了長達一年的討論。在當?shù)亟逃块T(和OECD)的幫助下,他們將開始第二輪分析,進行深入的數(shù)據(jù)挖掘,更好地了解如何相互類比,并和世界各地的其他學校進行類比。這些校長和老師不再把自己看作全球舞臺上的觀眾,而是合作的隊友。換言之,在費爾法克斯郡,大數(shù)據(jù)正在建立大范圍的信任。
英語原文:
Big data is the foundation on which education can reinvent its business model and build the coalition of governments, businesses, and social entrepreneurs that can bring together the evidence, innovation and resources to make lifelong learning a reality for all. So the next educational superpower might be the one that can combine the hierarchy of institutions with the power of collaborative information flows and social networks. More than anything else, this will hinge on getting people to generate innovative applications on top of big data. It’s about the co-creation of governance, about delivering more progressive and better policies than the industrial work organisation and the bureaucratic and litigation-oriented tools and strategies that we are used to in education.
This isn’t just or even mainly about improved transparency and public accountability in education. Throwing education data into the public space does not change the ways in which students learn, teachers teach and schools operate. It does not lead to people doing anything with that data and transforming education in ways that will actually change education practice. On the contrary, it often results simply in adversarial relationships between civil society and government over the control and ownership of information.
The prerequisite for using big data as a catalyst to change education practice is to get out of the “read-only” mode of our societies. It’s about combining transparency with collaboration. The way in which educational institutions often work is that you have a single expert sitting somewhere in a corner who determines the application of rules and regulations affecting hundreds of thousands of students and teachers – and nobody can figure out how those decisions were made. Big data can lead to big trust if we make that data available, train civic innovators, experiment, create a maker culture. It is no surprise that OECD’s new Survey of Adult Skills shows that the more proficient people are in literacy, the more they trust others.
Collaborative consumption provides a great example of this. These days, people share their cars and even their apartments with strangers. Collaborative consumption has made people micro-entrepreneurs – and its driving engine is building trust between strangers. Think about it: in the business world, we have evolved from trusting people to provide information, to willingly handing over credit card data, to connecting trustworthy strangers in all sorts of marketplaces. We are light-years away from that when it comes to data about education.
But here’s how we can get a little closer. Some years ago we created PISA, a global survey that examines the skills of 15-year-olds in ways that are comparable across countries. PISA has created huge amounts of big data about the quality of schooling outcomes. PISA has also helped to change the balance of power in education by making public policy in the field of education more transparent and more efficient. At the micro-level, there were still a lot of sceptics: teachers thought this was just another accountability tool through which governments wanted to control them. So what did we do? This year we put in place a kind of “MyPISA” – PISA-type instruments that we circulated out into the field. Now every school can figure out how it compares with other schools anywhere else in the world, schools that are similar to them or schools that are very different.
Suddenly, the dynamic has changed; schools are beginning to use that data. Ten schools in Fairfax county in Virginia, for example, have started a year-long discussion among principals and teachers based on the results of the first reports. With the help of district offices (and the OECD), they will be conducting secondary analyses to dig deeper into their data and understand how their schools compare with each other and with other schools around the world. Those principals and teachers are beginning to see themselves as teammates – not just spectators – on a global playing field. In other words, in Fairfax county, big data is building big trust.
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
PyTorch 核心機制:損失函數(shù)與反向傳播如何驅動模型進化 在深度學習的世界里,模型從 “一無所知” 到 “精準預測” 的蛻變,離 ...
2025-07-252025 年 CDA 數(shù)據(jù)分析師考綱煥新,引領行業(yè)人才新標準 在數(shù)字化浪潮奔涌向前的當下,數(shù)據(jù)已成為驅動各行業(yè)發(fā)展的核心要素。作為 ...
2025-07-25從數(shù)據(jù)到決策:CDA 數(shù)據(jù)分析師如何重塑職場競爭力與行業(yè)價值 在數(shù)字經濟席卷全球的今天,數(shù)據(jù)已從 “輔助工具” 升級為 “核心資 ...
2025-07-25用 Power BI 制作地圖熱力圖:基于經緯度數(shù)據(jù)的實踐指南 在數(shù)據(jù)可視化領域,地圖熱力圖憑借直觀呈現(xiàn)地理數(shù)據(jù)分布密度的優(yōu)勢,成 ...
2025-07-24解析 insert into select 是否會鎖表:原理、場景與應對策略 在數(shù)據(jù)庫操作中,insert into select 是一種常用的批量數(shù)據(jù)插入語句 ...
2025-07-24CDA 數(shù)據(jù)分析師的工作范圍解析 在數(shù)字化時代的浪潮下,數(shù)據(jù)已成為企業(yè)發(fā)展的核心資產之一。CDA(Certified Data Analyst)數(shù)據(jù)分 ...
2025-07-24從 CDA LEVEL II 考試題型看 Python 數(shù)據(jù)分析要點 在數(shù)據(jù)科學領域蓬勃發(fā)展的當下,CDA(Certified Data Analyst)認證成為眾多從 ...
2025-07-23用 Python 開啟數(shù)據(jù)分析之旅:從基礎到實踐的完整指南 在數(shù)據(jù)驅動決策的時代,數(shù)據(jù)分析已成為各行業(yè)不可或缺的核心能力。而 Pyt ...
2025-07-23鳶尾花判別分析:機器學習中的經典實踐案例 在機器學習的世界里,有一個經典的數(shù)據(jù)集如同引路明燈,為無數(shù)初學者打開了模式識別 ...
2025-07-23解析 response.text 與 response.content 的核心區(qū)別 在網絡數(shù)據(jù)請求與處理的場景中,開發(fā)者經常需要從服務器返回的響應中提取數(shù) ...
2025-07-22解析神經網絡中 Softmax 函數(shù)的核心作用 在神經網絡的發(fā)展歷程中,激活函數(shù)扮演著至關重要的角色,它們?yōu)榫W絡賦予了非線性能力, ...
2025-07-22CDA數(shù)據(jù)分析師證書考取全攻略 一、了解 CDA 數(shù)據(jù)分析師認證 CDA 數(shù)據(jù)分析師認證是一套科學化、專業(yè)化、國際化的人才考核標準, ...
2025-07-22左偏態(tài)分布轉正態(tài)分布:方法、原理與實踐 左偏態(tài)分布轉正態(tài)分布:方法、原理與實踐 在統(tǒng)計分析、數(shù)據(jù)建模和科學研究中,正態(tài)分 ...
2025-07-22你是不是也經常刷到別人漲粉百萬、帶貨千萬,心里癢癢的,想著“我也試試”,結果三個月過去,粉絲不到1000,播放量慘不忍睹? ...
2025-07-21我是陳輝,一個創(chuàng)業(yè)十多年的企業(yè)主,前半段人生和“文字”緊緊綁在一起。從廣告公司文案到品牌策劃,再到自己開策劃機構,我靠 ...
2025-07-21CDA 數(shù)據(jù)分析師的職業(yè)生涯規(guī)劃:從入門到卓越的成長之路 在數(shù)字經濟蓬勃發(fā)展的當下,數(shù)據(jù)已成為企業(yè)核心競爭力的重要來源,而 CD ...
2025-07-21MySQL執(zhí)行計劃中rows的計算邏輯:從原理到實踐 MySQL 執(zhí)行計劃中 rows 的計算邏輯:從原理到實踐 在 MySQL 數(shù)據(jù)庫的查詢優(yōu)化中 ...
2025-07-21在AI滲透率超85%的2025年,企業(yè)生存之戰(zhàn)就是數(shù)據(jù)之戰(zhàn),CDA認證已成為決定企業(yè)存續(xù)的生死線!據(jù)麥肯錫全球研究院數(shù)據(jù)顯示,AI驅 ...
2025-07-2035歲焦慮像一把高懸的利刃,裁員潮、晉升無望、技能過時……當職場中年危機與數(shù)字化浪潮正面交鋒,你是否發(fā)現(xiàn): 簡歷投了10 ...
2025-07-20CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-18