
剛剛接觸pandas的朋友,想了解數(shù)據(jù)結(jié)構(gòu),就一定要認(rèn)識(shí)DataFrame,接下來(lái)給大家詳細(xì)介紹!
初識(shí)pandas數(shù)據(jù)結(jié)構(gòu):DataFrame
import numpy as np import pandas as pd
data = {"name": ["Jack", "Tom", "LiSa"], "age": [20, 21, 18], "city": ["BeiJing", "TianJin", "ShenZhen"]} print(data) print("") frame = pd.DataFrame(data) # 創(chuàng)建DataFrame print(frame) print("") print(frame.index) # 查看行索引 print("") print(frame.columns) # 查看列索引 print("") print(frame.values) # 查看值
{'name': ['Jack', 'Tom', 'LiSa'], 'age': [20, 21, 18], 'city': ['BeiJing', 'TianJin', 'ShenZhen']} age city name 0 20 BeiJing Jack 1 21 TianJin Tom 2 18 ShenZhen LiSa RangeIndex(start=0, stop=3, step=1) Index(['age', 'city', 'name'], dtype='object') [[20 'BeiJing' 'Jack'] [21 'TianJin' 'Tom'] [18 'ShenZhen' 'LiSa']]
創(chuàng)建DataFrame
方法一: 由字典創(chuàng)建 字典的key是列索引值可以是
1.列表
2.ndarray
3.Series
# 值是ndarray 注意: 用ndarray創(chuàng)建DataFrame值的個(gè)數(shù)必須相同 否則報(bào)錯(cuò) data2 = {"one": np.random.rand(3), "two": np.random.rand(3) } print(data2) print("") print(pd.DataFrame(data2))
{'one': array([ 0.60720023, 0.30838024, 0.30678266]), 'two': array([ 0.21368784, 0.03797809, 0.41698718])} one two 0 0.607200 0.213688 1 0.308380 0.037978 2 0.306783 0.416987
# 值是Series--帶有標(biāo)簽的一維數(shù)組 注意: 用Series創(chuàng)建DataFrame值的個(gè)數(shù)可以不同 少的值用Nan填充 data3 = {"one": pd.Series(np.random.rand(4)), "two": pd.Series(np.random.rand(5)) } print(data3) print("") df3 = pd.DataFrame(data3) print(df3) print("")
{'one': 0 0.217639 1 0.921641 2 0.898810 3 0.933510 dtype: float64, 'two': 0 0.132789 1 0.099904 2 0.723495 3 0.719173 4 0.477456 dtype: float64} one two 0 0.217639 0.132789 1 0.921641 0.099904 2 0.898810 0.723495 3 0.933510 0.719173 4 NaN 0.477456
# 值是Series--帶有標(biāo)簽的一維數(shù)組 注意: 用Series創(chuàng)建DataFrame值的個(gè)數(shù)可以不同 少的值用Nan填充 data3 = {"one": pd.Series(np.random.rand(4)), "two": pd.Series(np.random.rand(5)) } print(data3) print("") df3 = pd.DataFrame(data3) print(df3) print("")
{'one': 0 0.217639 1 0.921641 2 0.898810 3 0.933510 dtype: float64, 'two': 0 0.132789 1 0.099904 2 0.723495 3 0.719173 4 0.477456 dtype: float64} one two 0 0.217639 0.132789 1 0.921641 0.099904 2 0.898810 0.723495 3 0.933510 0.719173 4 NaN 0.477456
方法二: 通過(guò)二維數(shù)組直接創(chuàng)建
data = [{"one": 1, "two": 2}, {"one": 5, "two": 10, "three": 15}] # 每一個(gè)字典在DataFrame里就是一行數(shù)據(jù) print(data) print("") df1 = pd.DataFrame(data) print(df1) print("") df2 = pd.DataFrame(data, index=list("ab"), columns=["one", "two", "three", "four"]) print(df2)
[{'one': 1, 'two': 2}, {'one': 5, 'two': 10, 'three': 15}] one three two 0 1 NaN 2 1 5 15.0 10 one two three four a 1 2 NaN NaN b 5 10 15.0 NaN
方法三: 由字典組成的列表創(chuàng)建 DataFrame
# columns為字典的key index為子字典的key data = {"Jack": {"age":1, "country":"China", "sex":"man"}, "LiSa": {"age":18, "country":"America", "sex":"women"}, "Tom": {"age":20, "country":"English"}} df1 = pd.DataFrame(data) print(df1) print("") # 注意: 這里的index并不能給子字典的key(行索引)重新命名 但可以給子字典的key重新排序 若出現(xiàn)原數(shù)組沒(méi)有的index 那么就填充N(xiāo)aN值 df2 = pd.DataFrame(data, index=["sex", "age", "country"]) print(df2) print("") df3 = pd.DataFrame(data, index=list("abc")) print(df3) print("") # columns 給列索引重新排序 若出現(xiàn)原數(shù)組沒(méi)有的列索引填充N(xiāo)aN值 df4 = pd.DataFrame(data, columns=["Tom", "LiSa", "Jack", "TangMu"]) print(df4)
Jack LiSa Tom age 1 18 20 country China America English sex man women NaN Jack LiSa Tom sex man women NaN age 1 18 20 country China America English Jack LiSa Tom a NaN NaN NaN b NaN NaN NaN c NaN NaN NaN Tom LiSa Jack TangMu age 20 18 1 NaN country English America China NaN sex NaN women man NaN
方法四: 由字典組成的字典
# columns為字典的key index為子字典的key data = {"Jack": {"age":1, "country":"China", "sex":"man"}, "LiSa": {"age":18, "country":"America", "sex":"women"}, "Tom": {"age":20, "country":"English"}} df1 = pd.DataFrame(data) print(df1) print("") # 注意: 這里的index并不能給子字典的key(行索引)重新命名 但可以給子字典的key重新排序 若出現(xiàn)原數(shù)組沒(méi)有的index 那么就填充N(xiāo)aN值 df2 = pd.DataFrame(data, index=["sex", "age", "country"]) print(df2) print("") df3 = pd.DataFrame(data, index=list("abc")) print(df3) print("") # columns 給列索引重新排序 若出現(xiàn)原數(shù)組沒(méi)有的列索引填充N(xiāo)aN值 df4 = pd.DataFrame(data, columns=["Tom", "LiSa", "Jack", "TangMu"]) print(df4)
Jack LiSa Tom age 1 18 20 country China America English sex man women NaN Jack LiSa Tom sex man women NaN age 1 18 20 country China America English Jack LiSa Tom a NaN NaN NaN b NaN NaN NaN c NaN NaN NaN Tom LiSa Jack TangMu age 20 18 1 NaN country English America China NaN sex NaN women man NaN
選擇行與列
選擇列 直接用df["列標(biāo)簽"]
df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100, index = ["one", "two", "three"], columns = ["a", "b", "c", "d"]) print(df) print("") print(df["a"], " ", type(df["a"])) # 取一列 print("") print(df[["a", "c"]], " ", type(df[["a", "c"]])) # 取多列
a b c d one 92.905464 11.630358 19.518051 77.417377 two 91.107357 0.641600 4.913662 65.593182 three 3.152801 42.324671 14.030304 22.138608 one 92.905464 two 91.107357 three 3.152801 Name: a, dtype: float64pandas.core.series.series'=""> a c one 92.905464 19.518051 two 91.107357 4.913662 three 3.152801 14.030304 pandas.core.frame.dataframe'="">
選擇行不能通過(guò)標(biāo)簽索引 df["one"] 來(lái)選擇行 要用 df.loc["one"], loc就是針對(duì)行來(lái)操作的
print(df) print("") print(df.loc["one"], " ", type(df.loc["one"])) # 取一行 print("") print(df.loc[["one", "three"]], " ", type(df.loc[["one", "three"]])) # 取不連續(xù)的多行 print("")
a b c d one 92.905464 11.630358 19.518051 77.417377 two 91.107357 0.641600 4.913662 65.593182 three 3.152801 42.324671 14.030304 22.138608 a 92.905464 b 11.630358 c 19.518051 d 77.417377 Name: one, dtype: float64pandas.core.series.series'=""> a b c d one 92.905464 11.630358 19.518051 77.417377 three 3.152801 42.324671 14.030304 22.138608 pandas.core.frame.dataframe'="">
loc支持切片索引--針對(duì)行 并包含末端 df.loc["one": "three"]
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.loc["one": "three"]) print("") print(df[: 3]) # 切片表示取連續(xù)的多行(盡量不用 免得混淆)
a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401 four 45.591798 63.274956 74.056045 2.466652 a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401 a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401
iloc也是對(duì)行來(lái)操作的 只不過(guò)把行標(biāo)簽改成了行索引 并且是不包含末端的
print(df) print("") print(df.iloc[0]) # 取一行 print("") print(df.iloc[[0,2]]) # 取不連續(xù)的多行 print("") print(df.iloc[0:3]) # 不包含末端
a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401 four 45.591798 63.274956 74.056045 2.466652 a 65.471894 b 19.137274 c 31.680635 d 41.659808 Name: one, dtype: float64 a b c d one 65.471894 19.137274 31.680635 41.659808 three 54.930986 68.232707 17.215544 70.765401 a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401
布爾型索引
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d1 = df >50 # d1為布爾型索引 print(d1) print("") print(df[d1]) # df根據(jù)d1 只返回True的值 False的值對(duì)應(yīng)為NaN print("")
a b c d one 91.503673 74.080822 85.274682 80.788609 two 49.670055 42.221393 36.674490 69.272958 three 78.349843 68.090150 22.326223 93.984369 four 79.057146 77.687246 32.304265 0.567816 a b c d one True True True True two False False False True three True True False True four True True False False a b c d one 91.503673 74.080822 85.274682 80.788609 two NaN NaN NaN 69.272958 three 78.349843 68.090150 NaN 93.984369 four 79.057146 77.687246 NaN NaN
選取某一列作為布爾型索引 返回True所在行的所有列 注意: 不能選取多列作為布爾型索引
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"], dtype=np.int64) print(df) print("") d2 = df["b"] > 50 print(d2) print("") print(df[d2])
a b c d one 27 18 47 61 two 26 35 16 78 three 80 98 94 41 four 85 3 47 90 one False two False three True four False Name: b, dtype: bool a b c d three 80 98 94 41
選取多列作為布爾型索引 返回True所對(duì)應(yīng)的值 False對(duì)應(yīng)為NaN 沒(méi)有的列全部填充為NaN
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"], dtype=np.int64) print(df) print("") d3 = df[["a", "c"]] > 50 print(d3) print("") print(df[d3])
a b c d one 49 82 32 39 two 78 2 24 84 three 6 84 84 69 four 21 89 16 77 a c one False False two True False three False True four False False a b c d one NaN NaN NaN NaN two 78.0 NaN NaN NaN three NaN NaN 84.0 NaN four NaN NaN NaN NaN
多重索引
print(df)
a b c d one 49 82 32 39 two 78 2 24 84 three 6 84 84 69 four 21 89 16 77
print(df["a"].loc[["one", "three"]]) # 取列再取行 print("") print(df[["a", "c"]].iloc[0:3])
one 49 three 6 Name: a, dtype: int64 a c one 49 32 two 78 24 three 6 84
print(df.loc[["one", "three"]][["a", "c"]]) # 取行再取列
a c one 49 32 three 6 84
print(df > 50) print("") print(df[df>50]) print("") print(df[df>50][["a","b"]])
a b c d one False True False False two True False False True three False True True True four False True False True a b c d one NaN 82.0 NaN NaN two 78.0 NaN NaN 84.0 three NaN 84.0 84.0 69.0 four NaN 89.0 NaN 77.0 a b one NaN 82.0 two 78.0 NaN three NaN 84.0 four NaN 89.0
DataFrame基本技巧
import numpy as np import pandas as pd
arr = np.random.rand(16).reshape(8, 2)*10 # print(arr) print("") print(len(arr)) print("") df = pd.DataFrame(arr, index=[chr(i) for i in range(97, 97+len(arr))], columns=["one", "two"]) print(df)
8 one two a 2.129959 1.827002 b 8.631212 0.423903 c 6.262012 3.851107 d 6.890305 9.543065 e 6.883742 3.643955 f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664
查看數(shù)據(jù)
print(df) print("") print(df.head(2)) # 查看頭部數(shù)據(jù) 默認(rèn)查看5條 print("") print(df.tail(3)) # 查看末尾數(shù)據(jù) 默認(rèn)查看5條
one two a 2.129959 1.827002 b 8.631212 0.423903 c 6.262012 3.851107 d 6.890305 9.543065 e 6.883742 3.643955 f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664 one two a 2.129959 1.827002 b 8.631212 0.423903 one two f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664
轉(zhuǎn)置
print(df)
one two a 2.129959 1.827002 b 8.631212 0.423903 c 6.262012 3.851107 d 6.890305 9.543065 e 6.883742 3.643955 f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664
print(df.T)
a b c d e f g \ one 2.129959 8.631212 6.262012 6.890305 6.883742 2.740878 6.242513 two 1.827002 0.423903 3.851107 9.543065 3.643955 6.851490 7.402237 h one 9.226572 two 3.179664
添加與修改
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") df.loc["five"] = 100 # 增加一行 print(df) print("") df["e"] = 10 # 增加一列 print(df) print("") df["e"] = 101 # 修改一列 print(df) print("") df.loc["five"] = 111 # 修改一行 print(df) print("")
a b c d one 0.708481 0.285426 0.355058 0.990070 two 0.199559 0.733047 0.322982 0.791169 three 0.198043 0.801163 0.356082 0.857501 four 0.430182 0.020549 0.896011 0.503088 a b c d one 0.708481 0.285426 0.355058 0.990070 two 0.199559 0.733047 0.322982 0.791169 three 0.198043 0.801163 0.356082 0.857501 four 0.430182 0.020549 0.896011 0.503088 five 100.000000 100.000000 100.000000 100.000000 a b c d e one 0.708481 0.285426 0.355058 0.990070 10 two 0.199559 0.733047 0.322982 0.791169 10 three 0.198043 0.801163 0.356082 0.857501 10 four 0.430182 0.020549 0.896011 0.503088 10 five 100.000000 100.000000 100.000000 100.000000 10 a b c d e one 0.708481 0.285426 0.355058 0.990070 101 two 0.199559 0.733047 0.322982 0.791169 101 three 0.198043 0.801163 0.356082 0.857501 101 four 0.430182 0.020549 0.896011 0.503088 101 five 100.000000 100.000000 100.000000 100.000000 101 a b c d e one 0.708481 0.285426 0.355058 0.990070 101 two 0.199559 0.733047 0.322982 0.791169 101 three 0.198043 0.801163 0.356082 0.857501 101 four 0.430182 0.020549 0.896011 0.503088 101 five 111.000000 111.000000 111.000000 111.000000 111
刪除 del(刪除行)/drop(刪除列 指定axis=1刪除行)
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") del df["a"] # 刪除列 改變?cè)瓟?shù)組 print(df)
a b c d one 0.339979 0.577661 0.108308 0.482164 two 0.374043 0.102067 0.660970 0.786986 three 0.384832 0.076563 0.529472 0.358780 four 0.938592 0.852895 0.466709 0.938307 b c d one 0.577661 0.108308 0.482164 two 0.102067 0.660970 0.786986 three 0.076563 0.529472 0.358780 four 0.852895 0.466709 0.938307
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d1 = df.drop("one") # 刪除行 并返回新的數(shù)組 不改變?cè)瓟?shù)組 print(d1) print("") print(df)
a b c d one 0.205438 0.324132 0.401131 0.368300 two 0.471426 0.671785 0.837956 0.097416 three 0.888816 0.451950 0.137032 0.568844 four 0.524813 0.448306 0.875787 0.479477 a b c d two 0.471426 0.671785 0.837956 0.097416 three 0.888816 0.451950 0.137032 0.568844 four 0.524813 0.448306 0.875787 0.479477 a b c d one 0.205438 0.324132 0.401131 0.368300 two 0.471426 0.671785 0.837956 0.097416 three 0.888816 0.451950 0.137032 0.568844 four 0.524813 0.448306 0.875787 0.479477
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d2 = df.drop("a", axis=1) # 刪除列 返回新的數(shù)組 不會(huì)改變?cè)瓟?shù)組 print(d2) print("") print(df)
a b c d one 0.939552 0.613218 0.357056 0.534264 two 0.110583 0.602123 0.990186 0.149132 three 0.756016 0.897848 0.176100 0.204789 four 0.655573 0.819009 0.094322 0.656406 b c d one 0.613218 0.357056 0.534264 two 0.602123 0.990186 0.149132 three 0.897848 0.176100 0.204789 four 0.819009 0.094322 0.656406 a b c d one 0.939552 0.613218 0.357056 0.534264 two 0.110583 0.602123 0.990186 0.149132 three 0.756016 0.897848 0.176100 0.204789 four 0.655573 0.819009 0.094322 0.656406
排序
根據(jù)指定列的列值排序 同時(shí)列值所在的行也會(huì)跟著移動(dòng) .sort_values(['列'])
# 單列 df = pd.DataFrame(np.random.rand(16).reshape(4,4), columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_values(['a'])) # 默認(rèn)升序 print("") print(df.sort_values(['a'], ascending=False)) # 降序
a b c d 0 0.616386 0.416094 0.072445 0.140167 1 0.263227 0.079205 0.520708 0.866316 2 0.665673 0.836688 0.733966 0.310229 3 0.405777 0.090530 0.991211 0.712312 a b c d 1 0.263227 0.079205 0.520708 0.866316 3 0.405777 0.090530 0.991211 0.712312 0 0.616386 0.416094 0.072445 0.140167 2 0.665673 0.836688 0.733966 0.310229 a b c d 2 0.665673 0.836688 0.733966 0.310229 0 0.616386 0.416094 0.072445 0.140167 3 0.405777 0.090530 0.991211 0.712312 1 0.263227 0.079205 0.520708 0.866316
根據(jù)索引排序 .sort_index()
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=[2,1,3,0], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 默認(rèn)升序 print("") print(df.sort_index(ascending=False)) # 降序
a b c d 2 0.669311 0.118176 0.635512 0.248388 1 0.752321 0.935779 0.572554 0.274019 3 0.701334 0.354684 0.592998 0.402686 0 0.548317 0.966295 0.191219 0.307908 a b c d 0 0.548317 0.966295 0.191219 0.307908 1 0.752321 0.935779 0.572554 0.274019 2 0.669311 0.118176 0.635512 0.248388 3 0.701334 0.354684 0.592998 0.402686 a b c d 3 0.701334 0.354684 0.592998 0.402686 2 0.669311 0.118176 0.635512 0.248388 1 0.752321 0.935779 0.572554 0.274019 0 0.548317 0.966295 0.191219 0.307908
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=["x", "z", "y", "t"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 根據(jù)字母順序表排序
a b c d x 0.717421 0.206383 0.757656 0.720580 z 0.969988 0.551812 0.210200 0.083031 y 0.956637 0.759216 0.350744 0.335287 t 0.846718 0.207411 0.936231 0.891330 a b c d t 0.846718 0.207411 0.936231 0.891330 x 0.717421 0.206383 0.757656 0.720580 y 0.956637 0.759216 0.350744 0.335287 z 0.969988 0.551812 0.210200 0.083031
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=["three", "one", "four", "two"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 根據(jù)單詞首字母排序
a b c d three 0.173818 0.902347 0.106037 0.303450 one 0.591793 0.526785 0.101916 0.884698 four 0.685250 0.364044 0.932338 0.668774 two 0.240763 0.260322 0.722891 0.634825 a b c d four 0.685250 0.364044 0.932338 0.668774 one 0.591793 0.526785 0.101916 0.884698 three 0.173818 0.902347 0.106037 0.303450 two 0.240763 0.260322 0.722891 0.634825
數(shù)據(jù)分析咨詢(xún)請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶(hù) ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱(chēng) BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢(xún)到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢(xún)結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢(xún)結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專(zhuān)注于從單 ...
2025-07-09year_month數(shù)據(jù)類(lèi)型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類(lèi)型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門(mén)控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書(shū)考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專(zhuān)業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開(kāi)啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03