
Numpy基礎數(shù)據(jù)結構
import numpy as np
ar = np.array([[1,2,3], [3,4,6], [4,5,7]]) # 二維數(shù)組 print(ar) print(type(ar)) ar
[[1 2 3] [3 4 6] [4 5 7]]numpy.ndarray'=""> array([[1, 2, 3], [3, 4, 6], [4, 5, 7]])
ar = np.array([[1,2,3], [3,4,6], [4,5,7]]) print(ar.ndim) # 輸出數(shù)組維度個數(shù)(描述這個數(shù)組是幾維的) print(ar.shape) # 輸出數(shù)組維度形狀 print(ar.size) # 數(shù)組元素的總個數(shù) print(ar.dtype) # 數(shù)組的元素類型
2 (3, 3) 9 int32
創(chuàng)建數(shù)組
# 方式1 列表創(chuàng)建 ar1 = np.array([0,1,2,3,4,5,6,7,8,9]) print(ar1)
[0 1 2 3 4 5 6 7 8 9]
# 方式2 生成器創(chuàng)建 ar2 = np.array(range(10)) print(ar2)
[0 1 2 3 4 5 6 7 8 9]
# 方式3 arange類似range ar3 = np.arange(10) # 返回0-9 整型 print(ar3) print("") ar3 = np.arange(10.0) # 返回0.0-9.0 浮點型 print(ar3) print("") ar3 = np.arange(5, 11) # 返回5-11之間的整型 不包括11 print(ar3) print("") ar3 = np.arange(5,11,2) # 2代表步長 print(ar3)
[0 1 2 3 4 5 6 7 8 9] [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] [ 5 6 7 8 9 10] [5 7 9]
# 方式4 隨機創(chuàng)建 范圍是 0-1 ar4 = np.random.rand(10) # 隨機生成數(shù)值范圍是 0-1 并且有10個元素的一維數(shù)組 print(ar4) print(ar4.ndim) # 維度個數(shù)(告訴你這個數(shù)組是幾維的)
[0.20490144 0.89930216 0.57403933 0.8923752 0.71947406 0.91049224 0.55663805 0.84965526 0.19433663 0.39087672] 1
# 方式5 均勻間隔創(chuàng)建 # linspace() 返回有num個元素的數(shù)組 這num個元素是在10-20上(默認包含結尾)有均勻間隔的元素 ar6 = np.linspace(10, 20, num=20) # 10 11 12 13 14 15 16 17 18 19 20 print(ar6) print("") ar6 = np.linspace(10, 20, num=21) # 如果想按0.5來均等分的話num就要有21個 可以通過數(shù)個數(shù)來驗證一下 print(ar6) print("") ar6 = np.linspace(10, 20, num=21, endpoint=False) # endpoint=False 表示不包括結尾 print(ar6) print("") ar6 = np.linspace(10, 20, num=20, endpoint=False) print(ar6) print("") ar6 = np.linspace(10, 20, num=20, endpoint=False, retstep=True) # 返回的一個元組并顯示步長 retstep=True顯示步長 print(ar6) print("") print(type(ar6)) print("") print(ar6[0]) # 取出數(shù)組 print(ar6[1]) # 取出數(shù)組的步長
[10. 10.52631579 11.05263158 11.57894737 12.10526316 12.63157895 13.15789474 13.68421053 14.21052632 14.73684211 15.26315789 15.78947368 16.31578947 16.84210526 17.36842105 17.89473684 18.42105263 18.94736842 19.47368421 20. ] [10. 10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5 15. 15.5 16. 16.5 17. 17.5 18. 18.5 19. 19.5 20. ] [10. 10.47619048 10.95238095 11.42857143 11.9047619 12.38095238 12.85714286 13.33333333 13.80952381 14.28571429 14.76190476 15.23809524 15.71428571 16.19047619 16.66666667 17.14285714 17.61904762 18.0952381 18.57142857 19.04761905 19.52380952] [10. 10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5 15. 15.5 16. 16.5 17. 17.5 18. 18.5 19. 19.5] (array([10. , 10.5, 11. , 11.5, 12. , 12.5, 13. , 13.5, 14. , 14.5, 15. , 15.5, 16. , 16.5, 17. , 17.5, 18. , 18.5, 19. , 19.5]), 0.5)[10. 10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5 15. 15.5 16. 16.5 17. 17.5 18. 18.5 19. 19.5] 0.5
# 創(chuàng)建元素全為0的數(shù)組 # zeros(shape, dtype=float, order='C') 默認為浮點型 ar7 = np.zeros(10) print(ar7) print(ar7.ndim) print("") ar7 = np.zeros((2,5)) print(ar7) print(ar7.ndim) print("") ar7 = np.zeros((2,5), dtype=int) print(ar7)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 1 [[0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]] 2 [[0 0 0 0 0] [0 0 0 0 0]]
# zeros_likes表示仿造arr創(chuàng)建一個全為0的數(shù)組 ar8 = np.array(range(10)) print(ar8)
[0 1 2 3 4 5 6 7 8 9]
# zeros_likes表示仿造ar8創(chuàng)建一個全為0的數(shù)組 ar8 = np.array([list(range(10)), list(range(10,20))]) print(ar8) print("") arr = np.zeros_like(ar8) print(ar8)
[[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]] [[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]]
# 創(chuàng)建數(shù)值全為1的數(shù)組 ar9 = np.ones(10) print(ar9) print("") ar9 = np.ones((2,5)) print(ar9)
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [[1. 1. 1. 1. 1.] [1. 1. 1. 1. 1.]]
# ones_like表示仿造ar9創(chuàng)建一個數(shù)值全為1的數(shù)組 ar9 = np.array([list(range(10)), list(range(10,20))]) print(ar9) print("") ar9 = np.ones_like(arr) print(ar9)
[[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]] [[1 1 1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1 1 1]]
# 創(chuàng)建單位矩陣 ar10 = np.eye(10) print(ar10) print("") print(ar10.ndim)
[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] 2
Numpy通用函數(shù)
import numpy as np
# reshape 改變數(shù)組維度形狀 ar1 = np.arange(10) print(ar1) print("") print(ar1.reshape(5, 2)) # 方式1 print("") ar1 = np.ones((2, 5)) print(ar1) print("") ar1 = np.ones((2, 5)).reshape(5, 2) # 方式2 print(ar1) print("") ar1 = np.reshape(np.arange(9), (3,3)) # 方式3 print(ar1)
[0 1 2 3 4 5 6 7 8 9] [[0 1] [2 3] [4 5] [6 7] [8 9]] [[ 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1.]] [[ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.]] [[0 1 2] [3 4 5] [6 7 8]]
# T 數(shù)組轉置 ar2 = np.zeros((2, 5)) print(ar2) print("") print(ar2.T)
[[ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]] [[ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.]]
# resize跟reshape類似 區(qū)別是當改變數(shù)組維度時不會因數(shù)據(jù)量的不同而報錯 ar3 = np.reshape(np.arange(15), (3, 5)) print(ar3) print("") ar4 = np.resize(ar3, (5, 3)) print(ar4) print("") ar5 = np.resize(ar3, (3, 4)) # 當改變后的數(shù)組需要的數(shù)據(jù)量比原數(shù)組的數(shù)據(jù)量少時 會依次排序 多余的數(shù)值不會顯示 print(ar5) print("") ar6 = np.resize(ar3, (4, 5)) # 當改變后的數(shù)組需要的數(shù)據(jù)量比原數(shù)組的數(shù)據(jù)量多時 不足的會補充排序 print(ar6)
[[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14]] [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11] [12 13 14]] [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14] [ 0 1 2 3 4]]
# np.resize(a, shape) 有返回值 不會改變原數(shù)組 ar7 = np.arange(10) print(ar7) print("") ar8 = np.resize(ar7, (2, 5)) print(ar8) print("") print(ar7)
[0 1 2 3 4 5 6 7 8 9] [[0 1 2 3 4] [5 6 7 8 9]] [0 1 2 3 4 5 6 7 8 9]
# a.resize(shape) 沒有返回值 直接改變原數(shù)組 ar7 = np.arange(10) print(ar7) print("") ar8 = ar7.resize(2, 5) # 注意ar8為None 因為是改變原數(shù)組 所以沒有返回值 print(ar8) print("") print(ar7)
[0 1 2 3 4 5 6 7 8 9] None [[0 1 2 3 4] [5 6 7 8 9]]
# 數(shù)據(jù)類型轉換 astype ar9 = np.arange(10, dtype=np.float64) print(ar9) print(ar9.dtype) # 查看數(shù)值類型 print("") ar10 = ar9.astype(np.int64) # 改變數(shù)值類型 print(ar10) print(ar10.dtype)
[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] float64 [0 1 2 3 4 5 6 7 8 9] int64
# 數(shù)組堆疊 # hstack vstack a = np.arange(10) print(a) print("") b= np.arange(10, 20) print(b) print("") c = np.hstack((a, b)) # hstack表示橫向連接 print(c) print("") d = np.vstack((a, b)) # vstack表示縱向連接 print(d) print("")
[0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19] [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] [[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]] [[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]]
# stack print(a) print("") print(b) print("") e = np.stack((a, b), axis=0) # axis=0 橫向看(縱向連接) print(e) print("") e = np.stack((a, b), axis=1) # 縱向看(橫向連接) print(e)
[0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19] [[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]] [[ 0 10] [ 1 11] [ 2 12] [ 3 13] [ 4 14] [ 5 15] [ 6 16] [ 7 17] [ 8 18] [ 9 19]]
# 數(shù)組拆分 a = np.arange(16).reshape(4, 4) print(a) print("") b = np.hsplit(a, 2) # 按列來切割 print(b) print("") c = np.vsplit(a, 2) # 按行來切割 print(c)
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] [array([[ 0, 1], [ 4, 5], [ 8, 9], [12, 13]]), array([[ 2, 3], [ 6, 7], [10, 11], [14, 15]])] [array([[0, 1, 2, 3], [4, 5, 6, 7]]), array([[ 8, 9, 10, 11], [12, 13, 14, 15]])]
# 求和 sum a = np.arange(10).reshape(2, 5) print(a) print("") print(np.sum(a, axis=0)) # 0代表橫軸 print("") print(np.sum(a, axis=1)) # 1代表縱軸
[[0 1 2 3 4] [5 6 7 8 9]] [ 5 7 9 11 13] [10 35]
# 排序 sort print(np.sort(np.array([3, 5, 5, 3, 1, 4])))
[1 3 3 4 5 5]
Numpy基本索引和切片
import numpy as np
# 一維數(shù)組 arr = np.array(range(10)) print(arr) print("") print(arr[4]) print(arr[:3]) print(arr[::2])
[0 1 2 3 4 5 6 7 8 9] 4 [0 1 2] [0 2 4 6 8]
# 二維數(shù)組 arr = np.arange(20).reshape(4, 5) print(arr) print("") print(arr[2]) # 取出某一行 print("") print(arr[2][2]) # 取出某一個數(shù) print("") print(arr[1:3]) # 取出多行 print("") print(arr[2, 2]) # 逗號前代表行 逗號后代表列 print("") print(arr[:2, 1:3]) # 取出多行多列
[[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14] [15 16 17 18 19]] [10 11 12 13 14] 12 [[ 5 6 7 8 9] [10 11 12 13 14]] 12 [[1 2] [6 7]]
# 三維數(shù)組 arr = np.arange(48).reshape(3,4,4) # 3個4行4列的數(shù)組 print(arr) print("*"*30) print(arr[2]) print("*"*30) print(arr[2][1]) print("*"*30) print(arr[2][1][1])
[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] [[16 17 18 19] [20 21 22 23] [24 25 26 27] [28 29 30 31]] [[32 33 34 35] [36 37 38 39] [40 41 42 43] [44 45 46 47]]] ****************************** [[32 33 34 35] [36 37 38 39] [40 41 42 43] [44 45 46 47]] ****************************** [36 37 38 39] ****************************** 37
Numpy布爾型索引及切片
# 用布爾型索引去做篩選 arr = np.arange(12).reshape(3, 4) print(arr) print("") a = np.array([True, False, True]) print(a) print("") b = np.array([True, False, False, True]) print(b) print("") print(arr[a, :]) print("") print(arr[:, b])
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [ True False True] [ True False False True] [[ 0 1 2 3] [ 8 9 10 11]] [[ 0 3] [ 4 7] [ 8 11]]
# 用布爾型矩陣去做篩選 print(arr) print("") m = arr>5 print(m) print("") n = arr[arr>5] print(n)
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[False False False False] [False False True True] [ True True True True]] [ 6 7 8 9 10 11]
Numpy隨機數(shù)生成
import numpy as np
# random.normal 正態(tài)分布隨機數(shù) print(np.random.normal(size=(4, 4))) # 生成一個4行4列的正態(tài)分布隨機數(shù)
[[ 1.01645652 -0.30952914 -0.40576099 -0.94259139] [-0.16483869 0.42278586 0.8260384 -0.88469832] [ 1.31487466 -0.86188981 -0.71485117 -2.12449215] [-1.80353888 -0.93264659 -1.1424078 0.31905742]]
# random.rand 平均分布 隨機生成 [0-1) 之間的數(shù) a = np.random.rand() # 生成一個數(shù) print(a) print("") b = np.random.rand(4) # 生成4個數(shù) print(b) print("") c = np.random.rand(2,4) # 生成二維數(shù)組 print(c)
0.11426452609434679 [ 0.79633633 0.32467913 0.28038512 0.56304155] [[ 0.06561635 0.40454132 0.58158716 0.73527881] [ 0.59301023 0.74935326 0.24347665 0.59653582]]
# np.random.randint 在自定義的范圍內隨機生成整數(shù) a = np.random.randint(3) # 在 [0-3)的范圍內隨機生成一個整數(shù) print(a) print("") b = np.random.randint(2, 10) # [2-10)的范圍內隨機生成一個整數(shù) print(b) print("") c = np.random.randint(20, size=10) # 生成一個 [0-20) 之間 有10個整數(shù)元素的一維數(shù)組 print(c) print("") d = np.random.randint(20, 40, size=10) # 生成一個 [20-40) 之間 有10個整數(shù)元素的一維數(shù)組 print(d) print("") e = np.random.randint(40, 50, size=(2, 5)) # 生成一個 [40-50) 之間 有2行5列元素的二維數(shù)組 print(e)
0 6 [ 9 11 5 12 19 4 19 1 7 10] [24 20 34 38 37 24 26 35 35 30] [[49 42 42 44 49] [44 44 40 49 45]]
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經網(wǎng)絡(RNN)家族中,長短期記憶網(wǎng)絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務的價值轉化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據(jù)查詢到趨勢預判? ? 在數(shù)據(jù)驅動決策的時代,預測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內權威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網(wǎng)絡(LSTM)作為循環(huán)神經網(wǎng)絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調研數(shù)據(jù)中的深度應用? 市場調研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉日期:解鎖數(shù)據(jù)處理的關鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03