
作者 | 劉順祥
來源 | 數(shù)據(jù)分析1480
這一期將分享我認為比較常規(guī)的100個實用函數(shù),這些函數(shù)大致可以分為六類,分別是統(tǒng)計匯總函數(shù)、數(shù)據(jù)清洗函數(shù)、數(shù)據(jù)篩選、繪圖與元素級運算函數(shù)、時間序列函數(shù)和其他函數(shù)。
統(tǒng)計匯總函數(shù)
數(shù)據(jù)分析過程中,必然要做一些數(shù)據(jù)的統(tǒng)計匯總工作,那么對于這一塊的數(shù)據(jù)運算有哪些可用的函數(shù)可以幫助到我們呢?具體看如下幾張表。
import pandas as pd import numpy as np x = pd.Series(np.random.normal(2,3,1000)) y = 3*x + 10 + pd.Series(np.random.normal(1,2,1000)) # 計算x與y的相關(guān)系數(shù) print(x.corr(y)) # 計算y的偏度 print(y.skew()) # 計算y的統(tǒng)計描述值 print(x.describe()) z = pd.Series(['A','B','C']).sample(n = 1000, replace = True) # 重新修改z的行索引 z.index = range(1000) # 按照z分組,統(tǒng)計y的組內(nèi)平均值 y.groupby(by = z).aggregate(np.mean)
# 統(tǒng)計z中個元素的頻次 print(z.value_counts()) a = pd.Series([1,5,10,15,25,30]) # 計算a中各元素的累計百分比 print(a.cumsum() / a.cumsum()[a.size - 1])
數(shù)據(jù)清洗函數(shù)
同樣,數(shù)據(jù)清洗工作也是必不可少的工作,在如下表格中羅列了常有的數(shù)據(jù)清洗的函數(shù)。
x = pd.Series([10,13,np.nan,17,28,19,33,np.nan,27]) #檢驗序列中是否存在缺失值 print(x.hasnans) # 將缺失值填充為平均值 print(x.fillna(value = x.mean())) # 前向填充缺失值 print(x.ffill())
income = pd.Series(['12500元','8000元','8500元','15000元','9000元']) # 將收入轉(zhuǎn)換為整型 print(income.str[:-1].astype(int)) gender = pd.Series(['男','女','女','女','男','女']) # 性別因子化處理 print(gender.factorize()) house = pd.Series(['大寧金茂府 | 3室2廳 | 158.32平米 | 南 | 精裝', '昌里花園 | 2室2廳 | 104.73平米 | 南 | 精裝', '紡大小區(qū) | 3室1廳 | 68.38平米 | 南 | 簡裝']) # 取出二手房的面積,并轉(zhuǎn)換為浮點型 house.str.split('|').str[2].str.strip().str[:-2].astype(float)
數(shù)據(jù)篩選
數(shù)據(jù)分析中如需對變量中的數(shù)值做子集篩選時,可以巧妙的使用下表中的幾個函數(shù),其中部分函數(shù)既可以使用在序列身上,也基本可以使用在數(shù)據(jù)框?qū)ο笾小?/span>
np.random.seed(1234) x = pd.Series(np.random.randint(10,20,10)) # 篩選出16以上的元素 print(x.loc[x > 16]) print(x.compress(x > 16)) # 篩選出13~16之間的元素 print(x[x.between(13,16)]) # 取出最大的三個元素 print(x.nlargest(3)) y = pd.Series(['ID:1 name:張三 age:24 income:13500', 'ID:2 name:李四 age:27 income:25000', 'ID:3 name:王二 age:21 income:8000']) # 取出年齡,并轉(zhuǎn)換為整數(shù) print(y.str.findall('age:(d+)').str[0].astype(int))
繪圖與元素級函數(shù)
np.random.seed(123) import matplotlib.pyplot as plt x = pd.Series(np.random.normal(10,3,1000)) # 繪制x直方圖 x.hist() # 顯示圖形 plt.show() # 繪制x的箱線圖 x.plot(kind='box') plt.show() installs = pd.Series(['1280萬','6.7億','2488萬','1892萬','9877','9877萬','1.2億']) # 將安裝量統(tǒng)一更改為“萬”的單位 def transform(x): if x.find('億') != -1: res = float(x[:-1])*10000 elif x.find('萬') != -1: res = float(x[:-1]) else: res = float(x)/10000 return res installs.apply(transform)
時間序列函數(shù)
其他函數(shù)
import numpy as np import pandas as pd np.random.seed(112) x = pd.Series(np.random.randint(8,18,6)) print(x) # 對x中的元素做一階差分 print(x.diff()) # 對x中的元素做降序處理 print(x.sort_values(ascending = False)) y = pd.Series(np.random.randint(8,16,100)) # 將y中的元素做排重處理,并轉(zhuǎn)換為列表對象 y.unique().tolist()
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03