
作者 | Python語音識(shí)別
來源 | 濤哥聊Python
雖然我們大多數(shù)人都驚嘆為什么DL這么好?在使用大量數(shù)據(jù)進(jìn)行訓(xùn)練時(shí),它在準(zhǔn)確性方面非常出色。近幾年隨著深度學(xué)習(xí)算法的發(fā)展,出現(xiàn)了很多深度學(xué)習(xí)的框架,這些框架各有所長,各具特色。下面將為大家介紹2019年最受歡迎的十大深度學(xué)習(xí)框架。
谷歌的Tensorflow可以說是當(dāng)今最受歡迎的深度學(xué)習(xí)框架。Gmail,Uber,Airbnb,Nvidia以及其他許多知名品牌都在使用。TF是目前深度學(xué)習(xí)的主流框架,Tensorflow主要特性:
TensorFlow優(yōu)點(diǎn):
Tensorflow之后用于深度學(xué)習(xí)的主要框架是PyTorch。PyTorch框架是Facebook開發(fā)的,已被Twitter和Salesforce等公司使用。
PyTorch基本特性:
PyTorch優(yōu)點(diǎn):
Sonnet深度學(xué)習(xí)框架是建立在TensorFlow的基礎(chǔ)之上。它是DeepMind用于創(chuàng)建具有復(fù)雜架構(gòu)的神經(jīng)網(wǎng)絡(luò)。
Sonnet基本特性:
Sonnet優(yōu)點(diǎn):
Keras是一個(gè)機(jī)器學(xué)習(xí)框架,如果您擁有大量數(shù)據(jù)和/或你想快速入門深度學(xué)習(xí),那么Keras將非常適合學(xué)習(xí)。Keras是TensorFlow高級(jí)集成APi,可以非常方便的和TensorFlow進(jìn)行融合。這是我強(qiáng)烈推薦學(xué)習(xí)的一個(gè)庫。
Keras基本特性:
Keras優(yōu)點(diǎn):
順便說一下TensorFlow和Keras的對(duì)比:
PS:Tensorflow處于底層框架:這和MXNet,Theano和PyTorch等框架一樣。包括實(shí)現(xiàn)諸如廣義矩陣 - 矩陣乘法和諸如卷積運(yùn)算的神經(jīng)網(wǎng)絡(luò)原語之類的數(shù)學(xué)運(yùn)算。
Keras處于高度集成框架。雖然更容易創(chuàng)建模型,但是面對(duì)復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)時(shí)可能不如TensorFlow。
MXNet是一種高度可擴(kuò)展的深度學(xué)習(xí)工具,可用于各種設(shè)備。雖然與TensorFlow相比,它似乎沒有被廣泛使用,但MXNet的增長可能會(huì)因?yàn)槌蔀橐粋€(gè)Apache項(xiàng)目而得到提升。
MXNet基本特性:
MXNet優(yōu)點(diǎn):
雖然它不像TF那么受歡迎,但MXNet具有詳細(xì)的文檔并且易于使用,能夠在命令式和符號(hào)式編程風(fēng)格之間進(jìn)行選擇,使其成為初學(xué)者和經(jīng)驗(yàn)豐富的工程師的理想選擇。
Gluon是一個(gè)更好的深度學(xué)習(xí)框架,可以用來創(chuàng)建復(fù)雜的模型。GLUON基本特性:
GLUON優(yōu)點(diǎn):
當(dāng)你聽到Swift時(shí),您可能會(huì)考慮iOS或MacOS的應(yīng)用程序開發(fā)。但是如果你正在學(xué)習(xí)深度學(xué)習(xí),那么你一定聽說過Swens for Tensorflow。通過直接與通用編程語言集成,Swift for TensorFlow可以以前所未有的方式表達(dá)更強(qiáng)大的算法。SWIFT基本特性:
SWIFT優(yōu)點(diǎn):
直到CMU的DyNet和Facebook的PyTorch出現(xiàn)之前,Chainer是動(dòng)態(tài)計(jì)算圖或網(wǎng)絡(luò)的領(lǐng)先神經(jīng)網(wǎng)絡(luò)框架,它允許輸入數(shù)據(jù)長度不一致。chainer基本特性:
Chainer優(yōu)點(diǎn):
那些使用Java或Scala的人應(yīng)該注意DL4J(Deep Learning for Java的簡稱)。DL4J的基本特性:
DL4J優(yōu)點(diǎn):
ONNX項(xiàng)目誕生于微軟和Facebook,旨在尋找深度學(xué)習(xí)模型呈現(xiàn)的開放格式。ONNX簡化了在人工智能的不同工作方式之間傳遞模型的過程。因此ONNX具有各種深度學(xué)習(xí)框架的優(yōu)點(diǎn)。
ONNX基本特性:
ONNX優(yōu)點(diǎn):
那么您應(yīng)該使用哪種深度學(xué)習(xí)框架?下面是幾點(diǎn)建議:
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實(shí)踐的落地者與價(jià)值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價(jià)值,最終要在 “實(shí)踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10