
從上一篇文章中我們可以看出,機器學(xué)習(xí)涉及到的很多算法,其實這些算法都是非常實用的,也正是由于這些算法,我們的機器學(xué)習(xí)才能夠解決很多問題,那么大家還知道機器學(xué)習(xí)有哪些算法呢?下面我們就給大家介紹一下關(guān)于機器學(xué)習(xí)算法的最后一部分內(nèi)容。
首先我們給大家介紹一下Boosting 和 AdaBoost,首先,Boosting 是一種集成技術(shù),它試圖集成一些弱分類器來創(chuàng)建一個強分類器。這通過從訓(xùn)練數(shù)據(jù)中構(gòu)建一個模型,然后創(chuàng)建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預(yù)測訓(xùn)練集,或添加的模型數(shù)量已經(jīng)達到最大數(shù)量。而AdaBoost 是第一個為二分類開發(fā)的真正成功的 boosting 算法。這是理解 boosting 的最佳起點?,F(xiàn)代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當(dāng)然,AdaBoost 與短決策樹一起使用。在第一個決策樹創(chuàng)建之后,利用每個訓(xùn)練實例上樹的性能來衡量下一個決策樹應(yīng)該對每個訓(xùn)練實例付出多少注意力。難以預(yù)測的訓(xùn)練數(shù)據(jù)被分配更多權(quán)重,而容易預(yù)測的數(shù)據(jù)分配的權(quán)重較少。依次創(chuàng)建模型,每一個模型在訓(xùn)練實例上更新權(quán)重,影響序列中下一個決策樹的學(xué)習(xí)。在所有決策樹建立之后,對新數(shù)據(jù)進行預(yù)測,并且通過每個決策樹在訓(xùn)練數(shù)據(jù)上的精確度評估其性能。所以說,由于在糾正算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數(shù)據(jù)十分重要。
而學(xué)習(xí)向量量化也是其中的一個算法,可能大家不知道的是,K近鄰算法的一個缺點是我們需要遍歷整個訓(xùn)練數(shù)據(jù)集。學(xué)習(xí)向量量化算法(簡稱 LVQ)是一種人工神經(jīng)網(wǎng)絡(luò)算法,它允許你選擇訓(xùn)練實例的數(shù)量,并精確地學(xué)習(xí)這些實例應(yīng)該是什么樣的。而學(xué)習(xí)向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,并逐漸調(diào)整以在學(xué)習(xí)算法的多次迭代中最好地總結(jié)訓(xùn)練數(shù)據(jù)集。在學(xué)習(xí)之后,碼本向量可用于預(yù)測。最相似的近鄰?fù)ㄟ^計算每個碼本向量和新數(shù)據(jù)實例之間的距離找到。然后返回最佳匹配單元的類別值或作為預(yù)測。如果大家重新調(diào)整數(shù)據(jù),使其具有相同的范圍,就可以獲得最佳結(jié)果。當(dāng)然,如果大家發(fā)現(xiàn)KNN在大家數(shù)據(jù)集上達到很好的結(jié)果,請嘗試用LVQ減少存儲整個訓(xùn)練數(shù)據(jù)集的內(nèi)存要求。
在這篇文章中我們給大家介紹了關(guān)于機器學(xué)習(xí)的算法的剩余部分內(nèi)容能夠,通過對這個算法的講解相信大家能夠更好地理解機器學(xué)習(xí)。正是由于這些算法,機器學(xué)習(xí)才如此強大。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10