
本文為CDA數(shù)據(jù)分析研究院原創(chuàng)作品,轉(zhuǎn)載需授權
1.為什么選擇Python進行數(shù)據(jù)分析?
Python是一門動態(tài)的、面向?qū)ο蟮哪_本語言,同時也是一門簡約,通俗易懂的編程語言。Python入門簡單,代碼可讀性強,一段好的Python代碼,閱讀起來像是在讀一篇外語文章。Python這種特性稱為“偽代碼”,它可以使你只關心完成什么樣的工作任務,而不是糾結(jié)于Python的語法。
另外,Python是開源的,它擁有非常多優(yōu)秀的庫,可以用于數(shù)據(jù)分析及其他領域。更重要的是,Python與最受歡迎的開源大數(shù)據(jù)平臺Hadoop具有很好的兼容性。因此,學習Python對于有志于向大數(shù)據(jù)分析崗位發(fā)展的數(shù)據(jù)分析師來說,是一件非常節(jié)省學習成本的事。
Python的眾多優(yōu)點讓它成為最受歡迎的程序設計語言之一,國內(nèi)外許多公司也已經(jīng)在使用Python,例YouTube,Google,阿里云等等。
2.編程基礎
要學習如何用Python進行數(shù)據(jù)分析, CDA數(shù)據(jù)分析師建議第一步是要了解一些Python的編程基礎,知道Python的數(shù)據(jù)結(jié)構,什么是向量、列表、數(shù)組、字典等等;了解Python的各種函數(shù)及模塊。下圖整理了這一階段要掌握的知識點:
3.數(shù)據(jù)分析流程
Python是數(shù)據(jù)分析利器,掌握了Python的編程基礎后,就可以逐漸進入數(shù)據(jù)分析的奇妙世界。CDA數(shù)據(jù)分析師認為一個完整的數(shù)據(jù)分析項目大致可分為以下五個流程:
1)數(shù)據(jù)獲取
一般有數(shù)據(jù)分析師崗位需求的公司都會有自己的數(shù)據(jù)庫,數(shù)據(jù)分析師可以通過SQL查詢語句來獲取數(shù)據(jù)庫中想要數(shù)據(jù)。Python已經(jīng)具有連接sql server、mysql、orcale等主流數(shù)據(jù)庫的接口包,比如pymssql、pymysql、cx_Oracle等。
而獲取外部數(shù)據(jù)主要有兩種獲取方式,一種是獲取國內(nèi)一些網(wǎng)站上公開的數(shù)據(jù)資料,例如國家統(tǒng)計局;一種是通過編寫爬蟲代碼自動爬取數(shù)據(jù)。如果希望使用Python爬蟲來獲取數(shù)據(jù),我們可以使用以下Python工具:
Requests-主要用于爬取數(shù)據(jù)時發(fā)出請求操作。
BeautifulSoup-用于爬取數(shù)據(jù)時讀取XML和HTML類型的數(shù)據(jù),解析為對象進而處理。
Scapy-一個處理交互式數(shù)據(jù)的包,可以解碼大部分網(wǎng)絡協(xié)議的數(shù)據(jù)包。
2)數(shù)據(jù)存儲
對于數(shù)據(jù)量不大的項目,可以使用excel來進行存儲和處理,但對于數(shù)據(jù)量過萬的項目,使用數(shù)據(jù)庫來存儲與管理會更高效便捷。
3)數(shù)據(jù)預處理
數(shù)據(jù)預處理也稱數(shù)據(jù)清洗。大多數(shù)情況下,我們拿到手的數(shù)據(jù)是格式不一致,存在異常值、缺失值等問題的,而不同項目數(shù)據(jù)預處理步驟的方法也不一樣。CDA數(shù)據(jù)分析師認為數(shù)據(jù)分析有80%的工作都在處理數(shù)據(jù)。如果選擇Python作為數(shù)據(jù)清洗的工具的話,我們可以使用Numpy和Pandas這兩個工具庫:
Numpy - 用于Python中的科學計算。它非常適用于與線性代數(shù),傅里葉變換和隨機數(shù)相關的運算。它可以很好地處理多維數(shù)據(jù),并兼容各種數(shù)據(jù)庫。
Pandas –Pandas是基于Numpy擴展而來的,可以提供一系列函數(shù)來處理數(shù)據(jù)結(jié)構和運算,如時間序列等。
4)建模與分析
這一階段首先要清楚數(shù)據(jù)的結(jié)構,結(jié)合項目需求來選取模型。
常見的數(shù)據(jù)挖掘模型有:
在這一階段,Python也具有很好的工具庫支持我們的建模工作:
scikit-learn-適用Python實現(xiàn)的機器學習算法庫。scikit-learn可以實現(xiàn)數(shù)據(jù)預處理、分類、回歸、降維、模型選擇等常用的機器學習算法。
Tensorflow-適用于深度學習且數(shù)據(jù)處理需求不高的項目。這類項目往往數(shù)據(jù)量較大,且最終需要的精度更高。
5)可視化分析
數(shù)據(jù)分析最后一步是撰寫數(shù)據(jù)分析報告,這也是數(shù)據(jù)可視化的一個過程。在數(shù)據(jù)可視化方面,Python目前主流的可視化工具有:
Matplotlib-主要用于二維繪圖,它能讓使用者很輕松地將數(shù)據(jù)圖形化,并且提供多樣化的輸出格式。
Seaborn-是基于matplotlib產(chǎn)生的一個模塊,專攻于統(tǒng)計可視化,可以和Pandas進行無縫鏈接。
按照這個流程,每個階段所涉及的知識點可以細分如下:
從上圖我們也可以得知,在整個數(shù)據(jù)分析流程,無論是數(shù)據(jù)提取、數(shù)據(jù)預處理、數(shù)據(jù)建模和分析,還是數(shù)據(jù)可視化,Python目前已經(jīng)可以很好地支持我們的數(shù)據(jù)分析工作。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構數(shù)據(jù)價值的核心操盤手 表格結(jié)構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10