
一:概念
決策樹(Decision Tree)是一種簡單但是廣泛使用的分類器。通過訓練數(shù)據(jù)構建決策樹,可以高效的對未知的數(shù)據(jù)進行分類。決策數(shù)有兩大優(yōu)點:1)決策樹模型可以讀性好,具有描述性,有助于人工分析;2)效率高,決策樹只需要一次構建,反復使用,每一次預測的最大計算次數(shù)不超過決策樹的深度。
看了一遍概念后,我們先從一個簡單的案例開始,如下圖我們樣本:
對于上面的樣本數(shù)據(jù),根據(jù)不同特征值我們最后是選擇是否約會,我們先自定義的一個決策樹,決策樹如下圖所示:
對于上圖中的決策樹,有個疑問,就是為什么第一個選擇是“長相”這個特征,我選擇“收入”特征作為第一分類的標準可以嘛?下面我們就對構建決策樹選擇特征的問題進行討論;在考慮之前我們要先了解一下相關的數(shù)學知識:
信息熵:熵代表信息的不確定性,信息的不確定性越大,熵越大;比如“明天太陽從東方升起”這一句話代表的信息我們可以認為為0;因為太陽從東方升起是個特定的規(guī)律,我們可以把這個事件的信息熵約等于0;說白了,信息熵和事件發(fā)生的概率成反比:數(shù)學上把信息熵定義如下:H(X)=H(P1,P2,…,Pn)=-∑P(xi)logP(xi)
互信息:指的是兩個隨機變量之間的關聯(lián)程度,即給定一個隨機變量后,另一個隨機變量不確定性的削弱程度,因而互信息取值最小為0,意味著給定一個隨機變量對確定一另一個隨機變量沒有關系,最大取值為隨機變量的熵,意味著給定一個隨機變量,能完全消除另一個隨機變量的不確定性
現(xiàn)在我們就把信息熵運用到決策樹特征選擇上,對于選擇哪個特征我們按照這個規(guī)則進行“哪個特征能使信息的確定性最大我們就選擇哪個特征”;比如上圖的案例中;
第一步:假設約會去或不去的的事件為Y,其信息熵為H(Y);
第二步:假設給定特征的條件下,其條件信息熵分別為H(Y|長相),H(Y|收入),H(Y|身高)
第三步:分別計算信息增益(互信息):G(Y,長相) = I(Y,長相) = H(Y)-H(Y|長相) 、G(Y,) = I(Y,長相) = H(Y)-H(Y|長相)等
第四部:選擇信息增益最大的特征作為分類特征;因為增益信息大的特征意味著給定這個特征,能很大的消除去約會還是不約會的不確定性;
第五步:迭代選擇特征即可;
按以上就解決了決策樹的分類特征選擇問題,上面的這種方法就是ID3方法,當然還是別的方法如 C4.5;等;
若決策樹的度過深的話會出現(xiàn)過擬合現(xiàn)象,對于決策樹的過擬合有二個方案:
1:剪枝-先剪枝和后剪紙(可以在構建決策樹的時候通過指定深度,每個葉子的樣本數(shù)來達到剪枝的作用)
2:隨機森林 --構建大量的決策樹組成森林來防止過擬合;雖然單個樹可能存在過擬合,但通過廣度的增加就會消除過擬合現(xiàn)象
三:隨機森林
隨機森林是一個最近比較火的算法,它有很多的優(yōu)點:
在數(shù)據(jù)集上表現(xiàn)良好
在當前的很多數(shù)據(jù)集上,相對其他算法有著很大的優(yōu)勢
它能夠處理很高維度(feature很多)的數(shù)據(jù),并且不用做特征選擇
在訓練完后,它能夠給出哪些feature比較重要
訓練速度快
在訓練過程中,能夠檢測到feature間的互相影響
容易做成并行化方法
實現(xiàn)比較簡單
隨機森林顧名思義,是用隨機的方式建立一個森林,森林里面有很多的決策樹組成,隨機森林的每一棵決策樹之間是沒有關聯(lián)的。在得到森林之后,當有一個新的輸入樣本進入的時候,就讓森林中的每一棵決策樹分別進行一下判斷,看看這個樣本應該屬于哪一類(對于分類算法),然后看看哪一類被選擇最多,就預測這個樣本為那一類。
上一段決策樹代碼:
<span style="font-size:18px;"># 花萼長度、花萼寬度,花瓣長度,花瓣寬度
iris_feature_E = 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature = u'花萼長度', u'花萼寬度', u'花瓣長度', u'花瓣寬度'
iris_class = 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica'
if __name__ == "__main__":
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
path = '..\\8.Regression\\iris.data' # 數(shù)據(jù)文件路徑
data = pd.read_csv(path, header=None)
x = data[range(4)]
y = pd.Categorical(data[4]).codes
# 為了可視化,僅使用前兩列特征
x = x.iloc[:, :2]
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=1)
print y_test.shape
# 決策樹參數(shù)估計
# min_samples_split = 10:如果該結點包含的樣本數(shù)目大于10,則(有可能)對其分支
# min_samples_leaf = 10:若將某結點分支后,得到的每個子結點樣本數(shù)目都大于10,則完成分支;否則,不進行分支
model = DecisionTreeClassifier(criterion='entropy')
model.fit(x_train, y_train)
y_test_hat = model.predict(x_test) # 測試數(shù)據(jù)
# 保存
# dot -Tpng my.dot -o my.png
# 1、輸出
with open('iris.dot', 'w') as f:
tree.export_graphviz(model, out_file=f)
# 2、給定文件名
# tree.export_graphviz(model, out_file='iris1.dot')
# 3、輸出為pdf格式
dot_data = tree.export_graphviz(model, out_file=None, feature_names=iris_feature_E, class_names=iris_class,
filled=True, rounded=True, special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_pdf('iris.pdf')
f = open('iris.png', 'wb')
f.write(graph.create_png())
f.close()
# 畫圖
N, M = 50, 50 # 橫縱各采樣多少個值
x1_min, x2_min = x.min()
x1_max, x2_max = x.max()
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2) # 生成網格采樣點
x_show = np.stack((x1.flat, x2.flat), axis=1) # 測試點
print x_show.shape
# # 無意義,只是為了湊另外兩個維度
# # 打開該注釋前,確保注釋掉x = x[:, :2]
# x3 = np.ones(x1.size) * np.average(x[:, 2])
# x4 = np.ones(x1.size) * np.average(x[:, 3])
# x_test = np.stack((x1.flat, x2.flat, x3, x4), axis=1) # 測試點
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_show_hat = model.predict(x_show) # 預測值
print y_show_hat.shape
print y_show_hat
y_show_hat = y_show_hat.reshape(x1.shape) # 使之與輸入的形狀相同
print y_show_hat
plt.figure(facecolor='w')
plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light) # 預測值的顯示
plt.scatter(x_test[0], x_test[1], c=y_test.ravel(), edgecolors='k', s=150, zorder=10, cmap=cm_dark, marker='*') # 測試數(shù)據(jù)
plt.scatter(x[0], x[1], c=y.ravel(), edgecolors='k', s=40, cmap=cm_dark) # 全部數(shù)據(jù)
plt.xlabel(iris_feature[0], fontsize=15)
plt.ylabel(iris_feature[1], fontsize=15)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid(True)
plt.title(u'鳶尾花數(shù)據(jù)的決策樹分類', fontsize=17)
plt.show()
</span>
以上就是決策樹做分類,但決策樹也可以用來做回歸,不說直接上代碼:
[python] view plain copy
<span style="font-size:18px;">if __name__ == "__main__":
N =100
x = np.random.rand(N) *6 -3
x.sort()
y = np.sin(x) + np.random.randn(N) *0.05
x = x.reshape(-1,1)
print x
dt = DecisionTreeRegressor(criterion='mse',max_depth=9)
dt.fit(x,y)
x_test = np.linspace(-3,3,50).reshape(-1,1)
y_hat = dt.predict(x_test)
plt.plot(x,y,'r*',ms =5,label='Actual')
plt.plot(x_test,y_hat,'g-',linewidth=2,label='predict')
plt.legend(loc ='upper left')
plt.grid()
plt.show()
#比較決策樹的深度影響
depth =[2,4,6,8,10]
clr = 'rgbmy'
dtr = DecisionTreeRegressor(criterion='mse')
plt.plot(x,y,'ko',ms=6,label='Actual')
x_test = np.linspace(-3,3,50).reshape(-1,1)
for d,c in zip(depth,clr):
dtr.set_params(max_depth=d)
dtr.fit(x,y)
y_hat = dtr.predict(x_test)
plt.plot(x_test,y_hat,'-',color=c,linewidth =2,label='Depth=%d' % d)
plt.legend(loc='upper left')
plt.grid(b =True)
plt.show()</span>
不同深度對回歸的 影響如下圖:
下面上個隨機森林代碼
[python] view plain copy
mpl.rcParams['font.sans-serif'] = [u'SimHei'] # 黑體 FangSong/KaiTi
mpl.rcParams['axes.unicode_minus'] = False
path = 'iris.data' # 數(shù)據(jù)文件路徑
data = pd.read_csv(path, header=None)
x_prime = data[range(4)]
y = pd.Categorical(data[4]).codes
feature_pairs = [[0, 1]]
plt.figure(figsize=(10,9),facecolor='#FFFFFF')
for i,pair in enumerate(feature_pairs):
x = x_prime[pair]
clf = RandomForestClassifier(n_estimators=200,criterion='entropy',max_depth=3)
clf.fit(x,y.ravel())
N, M =50,50
x1_min,x2_min = x.min()
x1_max,x2_max = x.max()
t1 = np.linspace(x1_min,x1_max, N)
t2 = np.linspace(x2_min,x2_max, M)
x1,x2 = np.meshgrid(t1,t2)
x_test = np.stack((x1.flat,x2.flat),axis =1)
y_hat = clf.predict(x)
y = y.reshape(-1)
c = np.count_nonzero(y_hat == y)
print '特征:',iris_feature[pair[0]],'+',iris_feature[pair[1]]
print '\t 預測正確數(shù)目:',c
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_hat = clf.predict(x_test)
y_hat = y_hat.reshape(x1.shape)
plt.pcolormesh(x1,x2,y_hat,cmap =cm_light)
plt.scatter(x[pair[0]],x[pair[1]],c=y,edgecolors='k',cmap=cm_dark)
plt.xlabel(iris_feature[pair[0]],fontsize=12)
plt.ylabel(iris_feature[pair[1]], fontsize=14)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid()
plt.tight_layout(2.5)
plt.subplots_adjust(top=0.92)
plt.suptitle(u'隨機森林對鳶尾花數(shù)據(jù)的兩特征組合的分類結果', fontsize=18)
plt.show()
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結構數(shù)據(jù)特征價值的專業(yè)核心 表結構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結構數(shù)據(jù)(以 “行 - 列” 存儲的結構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結構數(shù)據(jù)價值的核心操盤手 表格結構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到決策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10