99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀R語言利用caret包比較ROC曲線
R語言利用caret包比較ROC曲線
2018-06-16
收藏

R語言利用caret包比較ROC曲線

我們之前探討了多種算法,每種算法都有優(yōu)缺點,因而當我們針對具體問題去判斷選擇那種算法時,必須對不同的預測模型進行重做評估。為了簡化這個過程,我們使用caret包來生成并比較不同的模型與性能。
操作
加載對應的包與將訓練控制算法設置為10折交叉驗證,重復次數(shù)為3:
library(ROCR)
library(e1071)
library("pROC")
library(caret)
library("pROC")
control = trainControl(method = "repaetedcv",
                       number = 10,
                       repeats =3,
                       classProbs = TRUE,
                       summaryFunction = twoClassSummary)

使用glm在訓練數(shù)據(jù)集上訓練一個分類器

glm.model = train(churn ~ .,
                  data= trainset,
                  method = "glm",
                  metric = "ROC",
                  trControl = control)
使用svm在訓練數(shù)據(jù)集上訓練一個分類器

svm.model = train(churn ~ .,
                  data= trainset,
                  method = "svmRadial",
                  metric = "ROC",
                  trControl = control)
使用rpart函數(shù)查看rpart在訓練數(shù)據(jù)集上的運行情況

rpart.model = train(churn ~ .,
                    data = trainset,
                    method = "svmRadial",
                    metric = "ROC",
                    trControl = control)
使用不同的已經(jīng)訓練好的數(shù)據(jù)分類預測:

glm.probs = predict(glm.model,testset[,!names(testset) %in% c("churn")],type = "prob")
svm.probs = predict(svm.model,testset[,!names(testset) %in% c("churn")],type = "prob")
rpart.probs = predict(rpart.model,testset[,!names(testset) %in% c("churn")],type = "prob")
生成每個模型的ROC曲線,將它們繪制在一個圖中:

glm.ROC = roc(response = testset[,c("churn")],
              predictor = glm.probs$yes,
              levels = levels(testset[,c("churn")]))
plot(glm.ROC,type = "S",col = "red")

svm.ROC = roc(response = testset[,c("churn")],
              predictor = svm.probs$yes,
              levels = levels(testset[,c("churn")]))
plot(svm.ROC,add = TRUE,col = "green")

rpart.ROC = roc(response = testset[,c("churn")],
              predictor = rpart.probs$yes,
              levels = levels(testset[,c("churn")]))

plot(rpart.ROC,add = TRUE,col = "blue")

三種分類器的ROC曲線

說明

將不同的分類模型的ROC曲線繪制在同一個圖中進行比較,設置訓練過程的控制參數(shù)為重復三次的10折交叉驗證,模型性能的評估參數(shù)為twoClassSummary,然后在使用glm,svm,rpart,三種不同的方法建立分類模型。
從圖中可以看出,svm對訓練集的預測結果(未調優(yōu))是三種分類算法里最好的。

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師考試動態(tài)
數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調用 initGeetest 進行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調,回調的第一個參數(shù)驗證碼對象,之后可以使用它調用相應的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }