
R語言利用caret包比較ROC曲線
我們之前探討了多種算法,每種算法都有優(yōu)缺點,因而當我們針對具體問題去判斷選擇那種算法時,必須對不同的預測模型進行重做評估。為了簡化這個過程,我們使用caret包來生成并比較不同的模型與性能。
操作
加載對應的包與將訓練控制算法設置為10折交叉驗證,重復次數(shù)為3:
library(ROCR)
library(e1071)
library("pROC")
library(caret)
library("pROC")
control = trainControl(method = "repaetedcv",
number = 10,
repeats =3,
classProbs = TRUE,
summaryFunction = twoClassSummary)
使用glm在訓練數(shù)據(jù)集上訓練一個分類器
glm.model = train(churn ~ .,
data= trainset,
method = "glm",
metric = "ROC",
trControl = control)
使用svm在訓練數(shù)據(jù)集上訓練一個分類器
svm.model = train(churn ~ .,
data= trainset,
method = "svmRadial",
metric = "ROC",
trControl = control)
使用rpart函數(shù)查看rpart在訓練數(shù)據(jù)集上的運行情況
rpart.model = train(churn ~ .,
data = trainset,
method = "svmRadial",
metric = "ROC",
trControl = control)
使用不同的已經(jīng)訓練好的數(shù)據(jù)分類預測:
glm.probs = predict(glm.model,testset[,!names(testset) %in% c("churn")],type = "prob")
svm.probs = predict(svm.model,testset[,!names(testset) %in% c("churn")],type = "prob")
rpart.probs = predict(rpart.model,testset[,!names(testset) %in% c("churn")],type = "prob")
生成每個模型的ROC曲線,將它們繪制在一個圖中:
glm.ROC = roc(response = testset[,c("churn")],
predictor = glm.probs$yes,
levels = levels(testset[,c("churn")]))
plot(glm.ROC,type = "S",col = "red")
svm.ROC = roc(response = testset[,c("churn")],
predictor = svm.probs$yes,
levels = levels(testset[,c("churn")]))
plot(svm.ROC,add = TRUE,col = "green")
rpart.ROC = roc(response = testset[,c("churn")],
predictor = rpart.probs$yes,
levels = levels(testset[,c("churn")]))
plot(rpart.ROC,add = TRUE,col = "blue")
三種分類器的ROC曲線
說明
將不同的分類模型的ROC曲線繪制在同一個圖中進行比較,設置訓練過程的控制參數(shù)為重復三次的10折交叉驗證,模型性能的評估參數(shù)為twoClassSummary,然后在使用glm,svm,rpart,三種不同的方法建立分類模型。
從圖中可以看出,svm對訓練集的預測結果(未調優(yōu))是三種分類算法里最好的。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結構數(shù)據(jù)特征價值的專業(yè)核心 表結構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結構數(shù)據(jù)(以 “行 - 列” 存儲的結構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結構數(shù)據(jù)價值的核心操盤手 表格結構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10