99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀python編寫分類決策樹的代碼
python編寫分類決策樹的代碼
2018-04-23
收藏

python編寫分類決策樹的代碼

決策樹通常在機(jī)器學(xué)習(xí)中用于分類。

優(yōu)點(diǎn):計(jì)算復(fù)雜度不高,輸出結(jié)果易于理解,對(duì)中間值缺失不敏感,可以處理不相關(guān)特征數(shù)據(jù)。
缺點(diǎn):可能會(huì)產(chǎn)生過度匹配問題。
適用數(shù)據(jù)類型:數(shù)值型和標(biāo)稱型。

1.信息增益

劃分?jǐn)?shù)據(jù)集的目的是:將無序的數(shù)據(jù)變得更加有序。組織雜亂無章數(shù)據(jù)的一種方法就是使用信息論度量信息。通常采用信息增益,信息增益是指數(shù)據(jù)劃分前后信息熵的減少值。信息越無序信息熵越大,獲得信息增益最高的特征就是最好的選擇。
熵定義為信息的期望,符號(hào)xi的信息定義為:

其中p(xi)為該分類的概率。
熵,即信息的期望值為:

計(jì)算信息熵的代碼如下:

def calcShannonEnt(dataSet):
  numEntries = len(dataSet)
  labelCounts = {}
  for featVec in dataSet:
    currentLabel = featVec[-1]
    if currentLabel not in labelCounts:
      labelCounts[currentLabel] = 0
    labelCounts[currentLabel] += 1
  shannonEnt = 0
  for key in labelCounts:
    shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
  return shannonEnt

可以根據(jù)信息熵,按照獲取最大信息增益的方法劃分?jǐn)?shù)據(jù)集。

2.劃分?jǐn)?shù)據(jù)集

劃分?jǐn)?shù)據(jù)集就是將所有符合要求的元素抽出來。    
def splitDataSet(dataSet,axis,value):
  retDataset = []
  for featVec in dataSet:
    if featVec[axis] == value:
      newVec = featVec[:axis]
      newVec.extend(featVec[axis+1:])
      retDataset.append(newVec)
  return retDataset

3.選擇最好的數(shù)據(jù)集劃分方式

信息增益是熵的減少或者是信息無序度的減少。    
def chooseBestFeatureToSplit(dataSet):
  numFeatures = len(dataSet[0]) - 1
  bestInfoGain = 0
  bestFeature = -1
  baseEntropy = calcShannonEnt(dataSet)
  for i in range(numFeatures):
    allValue = [example[i] for example in dataSet]#列表推倒,創(chuàng)建新的列表
    allValue = set(allValue)#最快得到列表中唯一元素值的方法
    newEntropy = 0
    for value in allValue:
      splitset = splitDataSet(dataSet,i,value)
      newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
    infoGain = baseEntropy - newEntropy
    if infoGain > bestInfoGain:
      bestInfoGain = infoGain
      bestFeature = i
  return bestFeature

4.遞歸創(chuàng)建決策樹

結(jié)束條件為:程序遍歷完所有劃分?jǐn)?shù)據(jù)集的屬性,或每個(gè)分支下的所有實(shí)例都具有相同的分類。
當(dāng)數(shù)據(jù)集已經(jīng)處理了所有屬性,但是類標(biāo)簽還不唯一時(shí),采用多數(shù)表決的方式?jīng)Q定葉子節(jié)點(diǎn)的類型。    
def majorityCnt(classList):
 classCount = {}
 for value in classList:
  if value not in classCount: classCount[value] = 0
  classCount[value] += 1
 classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
 return classCount[0][0]

生成決策樹:    
def createTree(dataSet,labels):
 classList = [example[-1] for example in dataSet]
 labelsCopy = labels[:]
 if classList.count(classList[0]) == len(classList):
  return classList[0]
 if len(dataSet[0]) == 1:
  return majorityCnt(classList)
 bestFeature = chooseBestFeatureToSplit(dataSet)
 bestLabel = labelsCopy[bestFeature]
 myTree = {bestLabel:{}}
 featureValues = [example[bestFeature] for example in dataSet]
 featureValues = set(featureValues)
 del(labelsCopy[bestFeature])
 for value in featureValues:
  subLabels = labelsCopy[:]
  myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
 return myTree

5.測試算法——使用決策樹分類

同樣采用遞歸的方式得到分類結(jié)果。    
def classify(inputTree,featLabels,testVec):
 currentFeat = list(inputTree.keys())[0]
 secondTree = inputTree[currentFeat]
 try:
  featureIndex = featLabels.index(currentFeat)
 except ValueError as err:
  print('yes')
 try:
  for value in secondTree.keys():
   if value == testVec[featureIndex]:
    if type(secondTree[value]).__name__ == 'dict':
     classLabel = classify(secondTree[value],featLabels,testVec)
    else:
     classLabel = secondTree[value]
  return classLabel
 except AttributeError:
  print(secondTree)
6.完整代碼如下    
import numpy as np
import math
import operator
def createDataSet():
 dataSet = [[1,1,'yes'],
    [1,1,'yes'],
    [1,0,'no'],
    [0,1,'no'],
    [0,1,'no'],]
 label = ['no surfacing','flippers']
 return dataSet,label
 
def calcShannonEnt(dataSet):
 numEntries = len(dataSet)
 labelCounts = {}
 for featVec in dataSet:
  currentLabel = featVec[-1]
  if currentLabel not in labelCounts:
   labelCounts[currentLabel] = 0
  labelCounts[currentLabel] += 1
 shannonEnt = 0
 for key in labelCounts:
  shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
 return shannonEnt
 
 
def splitDataSet(dataSet,axis,value):
 retDataset = []
 for featVec in dataSet:
  if featVec[axis] == value:
   newVec = featVec[:axis]
   newVec.extend(featVec[axis+1:])
   retDataset.append(newVec)
 return retDataset
 
def chooseBestFeatureToSplit(dataSet):
 numFeatures = len(dataSet[0]) - 1
 bestInfoGain = 0
 bestFeature = -1
 baseEntropy = calcShannonEnt(dataSet)
 for i in range(numFeatures):
  allValue = [example[i] for example in dataSet]
  allValue = set(allValue)
  newEntropy = 0
  for value in allValue:
   splitset = splitDataSet(dataSet,i,value)
   newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
  infoGain = baseEntropy - newEntropy
  if infoGain > bestInfoGain:
   bestInfoGain = infoGain
   bestFeature = i
 return bestFeature
 
def majorityCnt(classList):
 classCount = {}
 for value in classList:
  if value not in classCount: classCount[value] = 0
  classCount[value] += 1
 classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
 return classCount[0][0]   
 
def createTree(dataSet,labels):
 classList = [example[-1] for example in dataSet]
 labelsCopy = labels[:]
 if classList.count(classList[0]) == len(classList):
  return classList[0]
 if len(dataSet[0]) == 1:
  return majorityCnt(classList)
 bestFeature = chooseBestFeatureToSplit(dataSet)
 bestLabel = labelsCopy[bestFeature]
 myTree = {bestLabel:{}}
 featureValues = [example[bestFeature] for example in dataSet]
 featureValues = set(featureValues)
 del(labelsCopy[bestFeature])
 for value in featureValues:
  subLabels = labelsCopy[:]
  myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
 return myTree
 
 
def classify(inputTree,featLabels,testVec):
 currentFeat = list(inputTree.keys())[0]
 secondTree = inputTree[currentFeat]
 try:
  featureIndex = featLabels.index(currentFeat)
 except ValueError as err:
  print('yes')
 try:
  for value in secondTree.keys():
   if value == testVec[featureIndex]:
    if type(secondTree[value]).__name__ == 'dict':
     classLabel = classify(secondTree[value],featLabels,testVec)
    else:
     classLabel = secondTree[value]
  return classLabel
 except AttributeError:
  print(secondTree)
 
if __name__ == "__main__":
 dataset,label = createDataSet()
 myTree = createTree(dataset,label)
 a = [1,1]
 print(classify(myTree,label,a))

7.編程技巧

extend與append的區(qū)別    
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)

extend([]),是將列表中的每個(gè)元素依次加入新列表中
append()是將括號(hào)中的內(nèi)容當(dāng)做一項(xiàng)加入到新列表中

列表推到

創(chuàng)建新列表的方式    
allValue = [example[i] for example in dataSet]

提取列表中唯一的元素    
allValue = set(allValue)

列表/元組排序,sorted()函數(shù)    
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

列表的復(fù)制    
labelsCopy = labels[:]
以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助.

數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼

若不方便掃碼,搜微信號(hào):CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個(gè)參數(shù)驗(yàn)證碼對(duì)象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個(gè)配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺(tái)檢測極驗(yàn)服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時(shí)表示是新驗(yàn)證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請(qǐng)參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計(jì)時(shí)完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請(qǐng)輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請(qǐng)輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }