
python實現(xiàn)識別相似圖片小結(jié)
在網(wǎng)上看到python做圖像識別的相關(guān)文章后,真心感覺python的功能實在太強大,因此將這些文章總結(jié)一下,建立一下自己的知識體系。
當然了,圖像識別這個話題作為計算機科學的一個分支,不可能就在本文簡單幾句就說清,所以本文只作基本算法的科普向。
如有錯誤,請多包涵和多多指教。
參考的文章和圖片來源會在底部一一列出。
以及本篇文章所用的代碼都會在底下給出github地址。
安裝相關(guān)庫
python用作圖像處理的相關(guān)庫主要有openCV(C++編寫,提供了python語言的接口),PIL,但由于PIL很早就停了,所以不支持python3.x,所以建議使用基于PIL的pillow,本文也是在python3.4和pillow的環(huán)境下進行實驗。
至于opencv,在做人臉識別的時候會用到,但本文不會涉及到,在本專欄的后續(xù)中會談及openCV的人臉識別和基于此的python圖片爬蟲,有興趣的朋友可以關(guān)注本專欄。
相關(guān)背景
要識別兩張相似圖像,我們從感性上來談是怎么樣的一個過程?首先我們會區(qū)分這兩張相片的類型,例如是風景照,還是人物照。風景照中,是沙漠還是海洋,人物照中,兩個人是不是都是國字臉,還是瓜子臉(還是倒瓜子臉……哈哈……)。
那么從機器的角度來說也是這樣的,先識別圖像的特征,然后再相比。
很顯然,在沒有經(jīng)過訓練的計算機(即建立模型),那么計算機很難區(qū)分什么是海洋,什么是沙漠。但是計算機很容易識別到圖像的像素值。
因此,在圖像識別中,顏色特征是最為常用的。(其余常用的特征還有紋理特征、形狀特征和空間關(guān)系特征等)
其中又分為
直方圖計算法
這里先用直方圖進行簡單講述。
先借用一下戀花蝶的圖片,
從肉眼來看,這兩張圖片大概也有八成是相似的了。
在python中可以依靠Image對象的histogram()方法獲取其直方圖數(shù)據(jù),但這個方法返回的結(jié)果是一個列表,如果想得到下圖可視化數(shù)據(jù),需要另外使用 matplotlib,這里因為主要介紹算法思路,matplotlib的使用這里不做介紹。
是的,我們可以明顯的發(fā)現(xiàn),兩張圖片的直方圖是近似重合的。所以利用直方圖判斷兩張圖片的是否相似的方法就是,計算其直方圖的重合程度即可。
計算方法如下:
其中g(shù)i和si是分別指兩條曲線的第i個點。
最后計算得出的結(jié)果就是就是其相似程度。
不過,這種方法有一個明顯的弱點,就是他是按照顏色的全局分布來看的,無法描述顏色的局部分布和色彩所處的位置。
也就是假如一張圖片以藍色為主,內(nèi)容是一片藍天,而另外一張圖片也是藍色為主,但是內(nèi)容卻是妹子穿了藍色裙子,那么這個算法也很可能認為這兩張圖片的相似的。
緩解這個弱點有一個方法就是利用Image的crop方法把圖片等分,然后再分別計算其相似度,最后綜合考慮。
圖像指紋與漢明距離
在介紹下面其他判別相似度的方法前,先補充一些概念。第一個就是圖像指紋
圖像指紋和人的指紋一樣,是身份的象征,而圖像指紋簡單點來講,就是將圖像按照一定的哈希算法,經(jīng)過運算后得出的一組二進制數(shù)字。
說到這里,就可以順帶引出漢明距離的概念了。
假如一組二進制數(shù)據(jù)為101,另外一組為111,那么顯然把第一組的第二位數(shù)據(jù)0改成1就可以變成第二組數(shù)據(jù)111,所以兩組數(shù)據(jù)的漢明距離就為1
簡單點說,漢明距離就是一組二進制數(shù)據(jù)變成另一組數(shù)據(jù)所需的步驟數(shù),顯然,這個數(shù)值可以衡量兩張圖片的差異,漢明距離越小,則代表相似度越高。漢明距離為0,即代表兩張圖片完全一樣。
如何計算得到漢明距離,情況下面三種哈希算法
平均哈希法(aHash)
此算法是基于比較灰度圖每個像素與平均值來實現(xiàn)的
一般步驟
1.縮放圖片,可利用Image對象的resize(size)改變,一般大小為8*8,64個像素值。
2.轉(zhuǎn)化為灰度圖
轉(zhuǎn)灰度圖的算法。
1.浮點算法:Gray=Rx0.3+Gx0.59+Bx0.11
2.整數(shù)方法:Gray=(Rx30+Gx59+Bx11)/100
3.移位方法:Gray =(Rx76+Gx151+Bx28)>>8;
4.平均值法:Gray=(R+G+B)/3;
5.僅取綠色:Gray=G;
在python中,可用Image的對象的方法convert('L')直接轉(zhuǎn)換為灰度圖
3.計算平均值:計算進行灰度處理后圖片的所有像素點的平均值。
4.比較像素灰度值:遍歷灰度圖片每一個像素,如果大于平均值記錄為1,否則為0.
5.得到信息指紋:組合64個bit位,順序隨意保持一致性。
最后比對兩張圖片的指紋,獲得漢明距離即可。
感知哈希算法(pHash)
平均哈希算法過于嚴格,不夠精確,更適合搜索縮略圖,為了獲得更精確的結(jié)果可以選擇感知哈希算法,它采用的是DCT(離散余弦變換)來降低頻率的方法
一般步驟:
縮小圖片:32 * 32是一個較好的大小,這樣方便DCT計算
轉(zhuǎn)化為灰度圖:把縮放后的圖片轉(zhuǎn)化為256階的灰度圖。(具體算法見平均哈希算法步驟)
計算DCT:DCT把圖片分離成分率的集合
縮小DCT:DCT是32 * 32,保留左上角的8 * 8,這些代表的圖片的最低頻率
計算平均值:計算縮小DCT后的所有像素點的平均值。
進一步減小DCT:大于平均值記錄為1,反之記錄為0.
得到信息指紋:組合64個信息位,順序隨意保持一致性。
最后比對兩張圖片的指紋,獲得漢明距離即可。
這里給出別人的DCT的介紹和計算方法(離散余弦變換的方法)
相比pHash,dHash的速度要快的多,相比aHash,dHash在效率幾乎相同的情況下的效果要更好,它是基于漸變實現(xiàn)的。
步驟:
縮小圖片:收縮到9*8的大小,一遍它有72的像素點
轉(zhuǎn)化為灰度圖:把縮放后的圖片轉(zhuǎn)化為256階的灰度圖。(具體算法見平均哈希算法步驟)
計算差異值:dHash算法工作在相鄰像素之間,這樣每行9個像素之間產(chǎn)生了8個不同的差異,一共8行,則產(chǎn)生了64個差異值
獲得指紋:如果左邊的像素比右邊的更亮,則記錄為1,否則為0.
最后比對兩張圖片的指紋,獲得漢明距離即可。
總結(jié)
這幾種算法是識別相似圖像的基礎(chǔ),顯然,有時兩圖中的人相似比整體的顏色相似更重要,所以我們有時需要進行人臉識別,
然后在臉部區(qū)進行局部哈希,或者進行其他的預(yù)處理再進行哈希,這里涉及其他知識本文不作介紹。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03