
python實(shí)現(xiàn)識(shí)別相似圖片小結(jié)
在網(wǎng)上看到python做圖像識(shí)別的相關(guān)文章后,真心感覺python的功能實(shí)在太強(qiáng)大,因此將這些文章總結(jié)一下,建立一下自己的知識(shí)體系。
當(dāng)然了,圖像識(shí)別這個(gè)話題作為計(jì)算機(jī)科學(xué)的一個(gè)分支,不可能就在本文簡(jiǎn)單幾句就說清,所以本文只作基本算法的科普向。
如有錯(cuò)誤,請(qǐng)多包涵和多多指教。
參考的文章和圖片來源會(huì)在底部一一列出。
以及本篇文章所用的代碼都會(huì)在底下給出github地址。
安裝相關(guān)庫(kù)
python用作圖像處理的相關(guān)庫(kù)主要有openCV(C++編寫,提供了python語(yǔ)言的接口),PIL,但由于PIL很早就停了,所以不支持python3.x,所以建議使用基于PIL的pillow,本文也是在python3.4和pillow的環(huán)境下進(jìn)行實(shí)驗(yàn)。
至于opencv,在做人臉識(shí)別的時(shí)候會(huì)用到,但本文不會(huì)涉及到,在本專欄的后續(xù)中會(huì)談及openCV的人臉識(shí)別和基于此的python圖片爬蟲,有興趣的朋友可以關(guān)注本專欄。
相關(guān)背景
要識(shí)別兩張相似圖像,我們從感性上來談是怎么樣的一個(gè)過程?首先我們會(huì)區(qū)分這兩張相片的類型,例如是風(fēng)景照,還是人物照。風(fēng)景照中,是沙漠還是海洋,人物照中,兩個(gè)人是不是都是國(guó)字臉,還是瓜子臉(還是倒瓜子臉……哈哈……)。
那么從機(jī)器的角度來說也是這樣的,先識(shí)別圖像的特征,然后再相比。
很顯然,在沒有經(jīng)過訓(xùn)練的計(jì)算機(jī)(即建立模型),那么計(jì)算機(jī)很難區(qū)分什么是海洋,什么是沙漠。但是計(jì)算機(jī)很容易識(shí)別到圖像的像素值。
因此,在圖像識(shí)別中,顏色特征是最為常用的。(其余常用的特征還有紋理特征、形狀特征和空間關(guān)系特征等)
其中又分為
直方圖計(jì)算法
這里先用直方圖進(jìn)行簡(jiǎn)單講述。
先借用一下戀花蝶的圖片,
從肉眼來看,這兩張圖片大概也有八成是相似的了。
在python中可以依靠Image對(duì)象的histogram()方法獲取其直方圖數(shù)據(jù),但這個(gè)方法返回的結(jié)果是一個(gè)列表,如果想得到下圖可視化數(shù)據(jù),需要另外使用 matplotlib,這里因?yàn)橹饕榻B算法思路,matplotlib的使用這里不做介紹。
是的,我們可以明顯的發(fā)現(xiàn),兩張圖片的直方圖是近似重合的。所以利用直方圖判斷兩張圖片的是否相似的方法就是,計(jì)算其直方圖的重合程度即可。
計(jì)算方法如下:
其中g(shù)i和si是分別指兩條曲線的第i個(gè)點(diǎn)。
最后計(jì)算得出的結(jié)果就是就是其相似程度。
不過,這種方法有一個(gè)明顯的弱點(diǎn),就是他是按照顏色的全局分布來看的,無(wú)法描述顏色的局部分布和色彩所處的位置。
也就是假如一張圖片以藍(lán)色為主,內(nèi)容是一片藍(lán)天,而另外一張圖片也是藍(lán)色為主,但是內(nèi)容卻是妹子穿了藍(lán)色裙子,那么這個(gè)算法也很可能認(rèn)為這兩張圖片的相似的。
緩解這個(gè)弱點(diǎn)有一個(gè)方法就是利用Image的crop方法把圖片等分,然后再分別計(jì)算其相似度,最后綜合考慮。
圖像指紋與漢明距離
在介紹下面其他判別相似度的方法前,先補(bǔ)充一些概念。第一個(gè)就是圖像指紋
圖像指紋和人的指紋一樣,是身份的象征,而圖像指紋簡(jiǎn)單點(diǎn)來講,就是將圖像按照一定的哈希算法,經(jīng)過運(yùn)算后得出的一組二進(jìn)制數(shù)字。
說到這里,就可以順帶引出漢明距離的概念了。
假如一組二進(jìn)制數(shù)據(jù)為101,另外一組為111,那么顯然把第一組的第二位數(shù)據(jù)0改成1就可以變成第二組數(shù)據(jù)111,所以兩組數(shù)據(jù)的漢明距離就為1
簡(jiǎn)單點(diǎn)說,漢明距離就是一組二進(jìn)制數(shù)據(jù)變成另一組數(shù)據(jù)所需的步驟數(shù),顯然,這個(gè)數(shù)值可以衡量?jī)蓮垐D片的差異,漢明距離越小,則代表相似度越高。漢明距離為0,即代表兩張圖片完全一樣。
如何計(jì)算得到漢明距離,情況下面三種哈希算法
平均哈希法(aHash)
此算法是基于比較灰度圖每個(gè)像素與平均值來實(shí)現(xiàn)的
一般步驟
1.縮放圖片,可利用Image對(duì)象的resize(size)改變,一般大小為8*8,64個(gè)像素值。
2.轉(zhuǎn)化為灰度圖
轉(zhuǎn)灰度圖的算法。
1.浮點(diǎn)算法:Gray=Rx0.3+Gx0.59+Bx0.11
2.整數(shù)方法:Gray=(Rx30+Gx59+Bx11)/100
3.移位方法:Gray =(Rx76+Gx151+Bx28)>>8;
4.平均值法:Gray=(R+G+B)/3;
5.僅取綠色:Gray=G;
在python中,可用Image的對(duì)象的方法convert('L')直接轉(zhuǎn)換為灰度圖
3.計(jì)算平均值:計(jì)算進(jìn)行灰度處理后圖片的所有像素點(diǎn)的平均值。
4.比較像素灰度值:遍歷灰度圖片每一個(gè)像素,如果大于平均值記錄為1,否則為0.
5.得到信息指紋:組合64個(gè)bit位,順序隨意保持一致性。
最后比對(duì)兩張圖片的指紋,獲得漢明距離即可。
感知哈希算法(pHash)
平均哈希算法過于嚴(yán)格,不夠精確,更適合搜索縮略圖,為了獲得更精確的結(jié)果可以選擇感知哈希算法,它采用的是DCT(離散余弦變換)來降低頻率的方法
一般步驟:
縮小圖片:32 * 32是一個(gè)較好的大小,這樣方便DCT計(jì)算
轉(zhuǎn)化為灰度圖:把縮放后的圖片轉(zhuǎn)化為256階的灰度圖。(具體算法見平均哈希算法步驟)
計(jì)算DCT:DCT把圖片分離成分率的集合
縮小DCT:DCT是32 * 32,保留左上角的8 * 8,這些代表的圖片的最低頻率
計(jì)算平均值:計(jì)算縮小DCT后的所有像素點(diǎn)的平均值。
進(jìn)一步減小DCT:大于平均值記錄為1,反之記錄為0.
得到信息指紋:組合64個(gè)信息位,順序隨意保持一致性。
最后比對(duì)兩張圖片的指紋,獲得漢明距離即可。
這里給出別人的DCT的介紹和計(jì)算方法(離散余弦變換的方法)
相比pHash,dHash的速度要快的多,相比aHash,dHash在效率幾乎相同的情況下的效果要更好,它是基于漸變實(shí)現(xiàn)的。
步驟:
縮小圖片:收縮到9*8的大小,一遍它有72的像素點(diǎn)
轉(zhuǎn)化為灰度圖:把縮放后的圖片轉(zhuǎn)化為256階的灰度圖。(具體算法見平均哈希算法步驟)
計(jì)算差異值:dHash算法工作在相鄰像素之間,這樣每行9個(gè)像素之間產(chǎn)生了8個(gè)不同的差異,一共8行,則產(chǎn)生了64個(gè)差異值
獲得指紋:如果左邊的像素比右邊的更亮,則記錄為1,否則為0.
最后比對(duì)兩張圖片的指紋,獲得漢明距離即可。
總結(jié)
這幾種算法是識(shí)別相似圖像的基礎(chǔ),顯然,有時(shí)兩圖中的人相似比整體的顏色相似更重要,所以我們有時(shí)需要進(jìn)行人臉識(shí)別,
然后在臉部區(qū)進(jìn)行局部哈希,或者進(jìn)行其他的預(yù)處理再進(jìn)行哈希,這里涉及其他知識(shí)本文不作介紹。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10