
Python文本相似性計算之編輯距離詳解
大家在做爬蟲的時候,很容易保持一些相似的數(shù)據(jù),這些相似的數(shù)據(jù)由于不完全一致,如果要通過人工一一的審核,將耗費(fèi)大量的時間,大家對編輯距離應(yīng)該有所了解,這篇文章我們先來了解下什么是編輯距離,然后在學(xué)習(xí)Python如何計算編輯距離,下面來一起學(xué)習(xí)學(xué)習(xí)吧。
編輯距離
編輯距離(Edit Distance),又稱Levenshtein距離,是指兩個字串之間,由一個轉(zhuǎn)成另一個所需的最少編輯操作次數(shù)。編輯操作包括將一個字符替換成另一個字符,插入一個字符,刪除一個字符。一般來說,編輯距離越小,兩個串的相似度越大。
例如將kitten一字轉(zhuǎn)成sitting:('kitten' 和 ‘sitting' 的編輯距離為3)
sitten (k→s)
sittin (e→i)
sitting (→g)
Python中的Levenshtein包可以方便的計算編輯距離
包的安裝:pip install python-Levenshtein
我們來使用下:
上面的程序執(zhí)行結(jié)果為3,但是只改了一個字符,為什么會發(fā)生這樣的情況?
原因是Python將這兩個字符串看成string類型,而在 string 類型中,默認(rèn)的 utf-8 編碼下,一個中文字符是用三個字節(jié)來表示的。
解決辦法是將字符串轉(zhuǎn)換成unicode格式,即可返回正確的結(jié)果1。
接下來重點介紹下保重幾個方法的作用:
Levenshtein.distance(str1, str2)
計算編輯距離(也稱Levenshtein距離)。是描述由一個字串轉(zhuǎn)化成另一個字串最少的操作次數(shù),在其中的操作包括插入、刪除、替換。算法實現(xiàn):動態(tài)規(guī)劃。
Levenshtein.hamming(str1, str2)
計算漢明距離。要求str1和str2必須長度一致。是描述兩個等長字串之間對應(yīng)位置上不同字符的個數(shù)。
Levenshtein.ratio(str1, str2)
計算萊文斯坦比。計算公式 r = (sum – ldist) / sum, 其中sum是指str1 和 str2 字串的長度總和,ldist是類編輯距離。注意這里是類編輯距離,在類編輯距離中刪除、插入依然+1,但是替換+2。
Levenshtein.jaro(s1, s2)
計算jaro距離,Jaro Distance據(jù)說是用來判定健康記錄上兩個名字是否相同,也有說是是用于人口普查,我們先來看一下Jaro Distance的定義。
兩個給定字符串S1和S2的Jaro Distance為:
其中的m為s1, s2匹配的字符數(shù),t是換位的數(shù)目。
兩個分別來自S1和S2的字符如果相距不超過
時,我們就認(rèn)為這兩個字符串是匹配的;而這些相互匹配的字符則決定了換位的數(shù)目t,簡單來說就是不同順序的匹配字符的數(shù)目的一半即為換位的數(shù)目t。舉例來說,MARTHA與MARHTA的字符都是匹配的,但是這些匹配的字符中,T和H要換位才能把MARTHA變?yōu)镸ARHTA,那么T和H就是不同的順序的匹配字符,t=2/2=1。
兩個字符串的Jaro Distance即為:
Levenshtein.jaro_winkler(s1, s2)
計算Jaro–Winkler距離,而Jaro-Winkler則給予了起始部分就相同的字符串更高的分?jǐn)?shù),他定義了一個前綴p,給予兩個字符串,如果前綴部分有長度為ι的部分相同,則Jaro-Winkler Distance為:
dj是兩個字符串的Jaro Distance
ι是前綴的相同的長度,但是規(guī)定最大為4
p則是調(diào)整分?jǐn)?shù)的常數(shù),規(guī)定不能超過25,不然可能出現(xiàn)dw大于1的情況,Winkler將這個常數(shù)定義為0.1
這樣,上面提及的MARTHA和MARHTA的Jaro-Winkler Distance為:
個人覺得算法可以完善的點:
去除停用詞(主要是標(biāo)點符號的影響)
針對中文進(jìn)行分析,按照詞比較是不是要比按照字比較效果更好?
總結(jié)
以上就是這篇文章的全部內(nèi)容了,希望本文的內(nèi)容對大家學(xué)習(xí)或者使用python能有所幫助
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10