
R處理數(shù)據(jù)的案例
將學(xué)生的各科考試成績(jī)組合為單一的成績(jī)衡量指標(biāo)、基于相對(duì)名次(前20%,下20%,等等)給出從A到F的評(píng)分、根據(jù)學(xué)生姓氏和名字的首字母對(duì)花名冊(cè)進(jìn)行排序
代碼如下:
[python] view plain copy
print?
options(digits = 2)
Student<-c("John Davis","Angela Williams","Bullwinkle Moose","David Jones",
"Janice Markhammer","Cheryl Cushing","Reuven Ytzrhak","Greg Knox",
"Joel England","Mary Rayburn")
Math<-c(502,600,412,358,495,512,410,625,573,522)
Science<-c(95,99,80,82,75,85,80,95,89,86)
English<-c(25,22,18,15,20,28,15,30,27,18)
roster<-data.frame(Student,Math,Science,English,stringsAsFactors = FALSE)
head(roster)
tail(roster)
z<-scale(roster[,2:4])
score<-apply(z, 1, mean)
roster<-cbind(roster,score)
help(quantile)
y<-quantile(score,c(.8,.6,.4,.2))
str(y)
roster$grade[score>=y[1]]<- "A"
roster$grade[score<y[1]& score>=y[2]]<-"B"
roster$grade[score<y[2]& score>=y[3]]<-"C"
roster$grade[score<y[3]& score>=y[4]]<-"D"
roster$grade[score<y[4]]<-"F"
name<-strsplit((roster$Student)," ")
lastname<-sapply(name,"[",2)
fristname<-sapply(name,"[",1)
roster<-cbind(fristname,lastname,roster[,-1])
roster<-roster[order(lastname,fristname),]
roster[,-9]
以上代碼寫(xiě)得比較緊湊,逐步分解如下。
步驟1 原始的學(xué)生花名冊(cè)已經(jīng)給出了。options(digits=2)限定了輸出小數(shù)點(diǎn)后數(shù)字的位數(shù),
并且讓輸出更容易閱讀。
步驟2 由于數(shù)學(xué)、科學(xué)和英語(yǔ)考試的分值不同(均值和標(biāo)準(zhǔn)差相去甚遠(yuǎn)),在組合之前需要先讓它們變得可以比較。一種方法是將變量進(jìn)行標(biāo)準(zhǔn)化,這樣每科考試的成績(jī)就都是用單位標(biāo)準(zhǔn)差來(lái)表示,而不是以原始的尺度來(lái)表示了。這個(gè)過(guò)程可以使用scale()函數(shù)來(lái)實(shí)現(xiàn)。
[python] view plain copy
print?
z
Math Science English
[1,] 0.013 1.078 0.587
[2,] 1.143 1.591 0.037
[3,] -1.026 -0.847 -0.697
[4,] -1.649 -0.590 -1.247
[5,] -0.068 -1.489 -0.330
[6,] 0.128 -0.205 1.137
[7,] -1.049 -0.847 -1.247
[8,] 1.432 1.078 1.504
[9,] 0.832 0.308 0.954
[10,] 0.243 -0.077 -0.697
步驟3 然后,可以通過(guò)函數(shù)mean()來(lái)計(jì)算各行的均值以獲得綜合得分,并使用函數(shù)cbind()將其添加到花名冊(cè)中:
[python] view plain copy
print?
>roster[,-9]
fristname lastname lastname.1 Math Science English score
5 Cheryl Cushing Markhammer 495 75 20 -0.63
6 John Davis Cushing 512 85 28 0.35
2 Joel England Williams 600 99 22 0.92
4 David Jones Jones 358 82 15 -1.16
10 Greg Knox Rayburn 522 86 18 -0.18
8 Janice Markhammer Knox 625 95 30 1.34
9 Bullwinkle Moose England 573 89 27 0.70
7 Mary Rayburn Ytzrhak 410 80 15 -1.05
1 Angela Williams Davis 502 95 25 0.56
3 Reuven Ytzrhak Moose 412 80 18 -0.86
步驟4 函數(shù)quantile()給出了學(xué)生綜合得分的百分位數(shù)??梢钥吹?,成績(jī)?yōu)锳的分界點(diǎn)為0.74,B的分界點(diǎn)為0.44,等等。
[python] view plain copy
print?
> y
80% 60% 40% 20%
0.74 0.44 -0.36 -0.89
步驟5 通過(guò)使用邏輯運(yùn)算符,你可以將學(xué)生的百分位數(shù)排名重編碼為一個(gè)新的類別型成績(jī)變量。下面在數(shù)據(jù)框roster中創(chuàng)建了變量grade
步驟6 你將使用函數(shù)strsplit()以空格為界把學(xué)生姓名拆分為姓氏和名字。把strsplit()應(yīng)用到一個(gè)字符串組成的向量上會(huì)返回一個(gè)列表:
[python] view plain copy
print?
name<-strsplit((roster$Student)," ")
[python] view plain copy
print?
> name
[[1]]
[1] "John" "Davis"
[[2]]
[1] "Angela" "Williams"
[[3]]
[1] "Bullwinkle" "Moose"
[[4]]
[1] "David" "Jones"
[[5]]
[1] "Janice" "Markhammer"
[[6]]
[1] "Cheryl" "Cushing"
[[7]]
[1] "Reuven" "Ytzrhak"
[[8]]
[1] "Greg" "Knox"
[[9]]
[1] "Joel" "England"
[[10]]
[1] "Mary" "Rayburn"
步驟7 你可以使用函數(shù)sapply()提取列表中每個(gè)成分的第一個(gè)元素,放入一個(gè)儲(chǔ)存名字的向量,并提取每個(gè)成分的第二個(gè)元素,放入一個(gè)儲(chǔ)存姓氏的向量。"["是一個(gè)可以提取某個(gè)對(duì)象的一部分的函數(shù)——在這里它是用來(lái)提取列表name各成分中的第一個(gè)或第二個(gè)元素的。你將使用cbind()把它們添加到花名冊(cè)中。由于已經(jīng)不再需要student變量,可以將其丟棄(在下標(biāo)中使用?1)。
步驟8 最后,可以使用函數(shù)order()依姓氏和名字對(duì)數(shù)據(jù)集進(jìn)行排序.
[python] view plain copy
print?
> roster[,-9]
fristname lastname lastname.1 Math Science English score grade
5 Cheryl Cushing Markhammer 495 75 20 -0.63 C
6 John Davis Cushing 512 85 28 0.35 B
2 Joel England Williams 600 99 22 0.92 B
4 David Jones Jones 358 82 15 -1.16 F
10 Greg Knox Rayburn 522 86 18 -0.18 A
8 Janice Markhammer Knox 625 95 30 1.34 D
9 Bullwinkle Moose England 573 89 27 0.70 D
7 Mary Rayburn Ytzrhak 410 80 15 -1.05 C
1 Angela Williams Davis 502 95 25 0.56 A
3 Reuven Ytzrhak Moose 412 80 18 -0.86 F
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書(shū)考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開(kāi)啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03