
數(shù)據(jù)挖掘中的分類和聚類
分類(classification ):有指導(dǎo)的類別劃分,在若干先驗(yàn)標(biāo)準(zhǔn)的指導(dǎo)下進(jìn)行,效果好壞取決于標(biāo)準(zhǔn)選取的好壞。
它找出描述并區(qū)分?jǐn)?shù)據(jù)類或概念的模型(或函數(shù)),以便能夠使用模型預(yù)測(cè)類標(biāo)記未知的對(duì)象類。分類分析在數(shù)據(jù)挖掘中是一項(xiàng)比較重要的任務(wù), 目前在商業(yè)上應(yīng)用最多。分類的目的是學(xué)會(huì)一個(gè)分類函數(shù)或分類模型(也常常稱作分類器),該模型能把數(shù)據(jù)庫中的數(shù)據(jù)項(xiàng)映射到給定類別中的某一個(gè)類中。分類和回歸都可用于預(yù)測(cè),兩者的目的都是從歷史數(shù)據(jù)紀(jì)錄中自動(dòng)推導(dǎo)出對(duì)給定數(shù)據(jù)的推廣描述,從而能對(duì)未來數(shù)據(jù)進(jìn)行預(yù)測(cè)。與回歸不同的是,分類的輸出是離散的類別值,而回歸的輸出是連續(xù)數(shù)值。二者常表現(xiàn)為決策樹的形式,根據(jù)數(shù)據(jù)值從樹根開始搜索,沿著數(shù)據(jù)滿足的分支往上走,走到樹葉就能確定類別。
要構(gòu)造分類器,需要有一個(gè)訓(xùn)練樣本數(shù)據(jù)集作為輸入。訓(xùn)練集由一組數(shù)據(jù)庫記錄或元組構(gòu)成,每個(gè)元組是一個(gè)由有關(guān)字段(又稱屬性或特征)值組成的特征向量,此外,訓(xùn)練樣本還有一個(gè)類別標(biāo)記。一個(gè)具體樣本的形式可表示為:(v1,v2,...,vn; c);其中vi表示字段值,c表示類別。分類器的構(gòu)造方法有統(tǒng)計(jì)方法、機(jī)器學(xué)習(xí)方法、神經(jīng)網(wǎng)絡(luò)方法等等。不同的分類器有不同的特點(diǎn)。有三種分類器評(píng)價(jià)或比較尺度:1)預(yù)測(cè)準(zhǔn)確度;2)計(jì)算復(fù)雜度;3)模型描述的簡潔度。預(yù)測(cè)準(zhǔn)確度是用得最多的一種比較尺度,特別是對(duì)于預(yù)測(cè)型分類任務(wù)。計(jì)算復(fù)雜度依賴于具體的實(shí)現(xiàn)細(xì)節(jié)和硬件環(huán)境,在數(shù)據(jù)挖掘中,由于操作對(duì)象是巨量的數(shù)據(jù),因此空間和時(shí)間的復(fù)雜度問題將是非常重要的一個(gè)環(huán)節(jié)。對(duì)于描述型的分類任務(wù),模型描述越簡潔越受歡迎。另外要注意的是,分類的效果一般和數(shù)據(jù)的特點(diǎn)有關(guān),有的數(shù)據(jù)噪聲大,有的有空缺值,有的分布稀疏,有的字段或?qū)傩蚤g相關(guān)性強(qiáng),有的屬性是離散的而有的是連續(xù)值或混合式的。目前普遍認(rèn)為不存在某種方法能適合于各種特點(diǎn)的數(shù)據(jù)。
聚類(clustering):沒有先驗(yàn)標(biāo)準(zhǔn),完全依靠事先的聚類原則(距離,近鄰等),進(jìn)行類別劃分,效果好壞取決于聚類原則的選取。
是指根據(jù)“物以類聚”的原理,將本身沒有類別的樣本聚集成不同的組,這樣的一組數(shù)據(jù)對(duì)象的集合叫做簇,并且對(duì)每一個(gè)這樣的簇進(jìn)行描述的過程。它的目的是使得屬于同一個(gè)簇的樣本之間應(yīng)該彼此相似,而不同簇的樣本應(yīng)該足夠不相似。與分類規(guī)則不同,進(jìn)行聚類前并不知道將要?jiǎng)澐殖蓭讉€(gè)組和什么樣的組,也不知道根據(jù)哪些空間區(qū)分規(guī)則來定義組。其目的旨在發(fā)現(xiàn)空間實(shí)體的屬性間的函數(shù)關(guān)系,挖掘的知識(shí)用以屬性名為變量的數(shù)學(xué)方程來表示。當(dāng)前,聚類技術(shù)正在蓬勃發(fā)展,涉及范圍包括數(shù)據(jù)挖掘、統(tǒng)計(jì)學(xué)、機(jī)器學(xué)習(xí)、空間數(shù)據(jù)庫技術(shù)、生物學(xué)以及市場營銷等領(lǐng)域,聚類分析已經(jīng)成為數(shù)據(jù)挖掘研究領(lǐng)域中一個(gè)非?;钴S的研究課題。常見的聚類算法包括:K-均值聚類算法、K-中心點(diǎn)聚類算法、CLARANS、BIRCH、CLIQUE、DBSCAN等。
通常,為有監(jiān)督分類提供若干已標(biāo)記的模式(預(yù)分類過),需要解決的問題是為一個(gè)新遇到的但無標(biāo)記的模式進(jìn)行標(biāo)記。在典型的情況下,先將給定的無標(biāo)記的模式用來學(xué)習(xí)〔訓(xùn)練),反過來再用來標(biāo)記一個(gè)新模式。聚類需要解決的問題是將已給定的若千無標(biāo)記的模式聚集起來使之成為有意義的聚類。從某種意義上說,標(biāo)記也與聚類相關(guān),但這些類型的標(biāo)記是由數(shù)據(jù)驅(qū)動(dòng)的,也就是說,只是從數(shù)據(jù)中得到這些標(biāo)記。聚類與數(shù)據(jù)挖掘中的分類不同,在分類模塊中,對(duì)于目標(biāo)數(shù)據(jù)庫中存在哪些類是知道的,要做的就是將每一條記錄分別屬于哪一類標(biāo)記出來:與此相似但又不同的是,聚類是在預(yù)先不知道目標(biāo)數(shù)據(jù)庫到底有多少類的情況下,希望將所有的記錄組成不同的類或者說“聚類”,并且使得在這種分類情況下,以某種度量為標(biāo)準(zhǔn)的相似性,在同一聚類之間最小化,而在不同聚類之間最大化。事實(shí)上,聚類算法中很多算法的相似性都是基于距離的,而且由于現(xiàn)實(shí)數(shù)據(jù)庫中數(shù)據(jù)類型的多樣性,關(guān)于如何度量兩個(gè)含有非數(shù)值型字段的記錄之間的距離的討論有很多,并提出了相應(yīng)的算法。在很多應(yīng)用中,聚類分析得到的每一個(gè)類中的成員都可以被統(tǒng)一看待。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10