99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀數(shù)據(jù)挖掘中的分類和聚類
數(shù)據(jù)挖掘中的分類和聚類
2017-12-11
收藏

數(shù)據(jù)挖掘中的分類和聚類

分類(classification ):有指導(dǎo)的類別劃分,在若干先驗(yàn)標(biāo)準(zhǔn)的指導(dǎo)下進(jìn)行,效果好壞取決于標(biāo)準(zhǔn)選取的好壞。

它找出描述并區(qū)分?jǐn)?shù)據(jù)類或概念的模型(或函數(shù)),以便能夠使用模型預(yù)測(cè)類標(biāo)記未知的對(duì)象類。分類分析在數(shù)據(jù)挖掘中是一項(xiàng)比較重要的任務(wù), 目前在商業(yè)上應(yīng)用最多。分類的目的是學(xué)會(huì)一個(gè)分類函數(shù)或分類模型(也常常稱作分類器),該模型能把數(shù)據(jù)庫中的數(shù)據(jù)項(xiàng)映射到給定類別中的某一個(gè)類中。分類和回歸都可用于預(yù)測(cè),兩者的目的都是從歷史數(shù)據(jù)紀(jì)錄中自動(dòng)推導(dǎo)出對(duì)給定數(shù)據(jù)的推廣描述,從而能對(duì)未來數(shù)據(jù)進(jìn)行預(yù)測(cè)。與回歸不同的是,分類的輸出是離散的類別值,而回歸的輸出是連續(xù)數(shù)值。二者常表現(xiàn)為決策樹的形式,根據(jù)數(shù)據(jù)值從樹根開始搜索,沿著數(shù)據(jù)滿足的分支往上走,走到樹葉就能確定類別。

要構(gòu)造分類器,需要有一個(gè)訓(xùn)練樣本數(shù)據(jù)集作為輸入。訓(xùn)練集由一組數(shù)據(jù)庫記錄或元組構(gòu)成,每個(gè)元組是一個(gè)由有關(guān)字段(又稱屬性或特征)值組成的特征向量,此外,訓(xùn)練樣本還有一個(gè)類別標(biāo)記。一個(gè)具體樣本的形式可表示為:(v1,v2,...,vn; c);其中vi表示字段值,c表示類別。分類器的構(gòu)造方法有統(tǒng)計(jì)方法、機(jī)器學(xué)習(xí)方法、神經(jīng)網(wǎng)絡(luò)方法等等。不同的分類器有不同的特點(diǎn)。有三種分類器評(píng)價(jià)或比較尺度:1)預(yù)測(cè)準(zhǔn)確度;2)計(jì)算復(fù)雜度;3)模型描述的簡潔度。預(yù)測(cè)準(zhǔn)確度是用得最多的一種比較尺度,特別是對(duì)于預(yù)測(cè)型分類任務(wù)。計(jì)算復(fù)雜度依賴于具體的實(shí)現(xiàn)細(xì)節(jié)和硬件環(huán)境,在數(shù)據(jù)挖掘中,由于操作對(duì)象是巨量的數(shù)據(jù),因此空間和時(shí)間的復(fù)雜度問題將是非常重要的一個(gè)環(huán)節(jié)。對(duì)于描述型的分類任務(wù),模型描述越簡潔越受歡迎。另外要注意的是,分類的效果一般和數(shù)據(jù)的特點(diǎn)有關(guān),有的數(shù)據(jù)噪聲大,有的有空缺值,有的分布稀疏,有的字段或?qū)傩蚤g相關(guān)性強(qiáng),有的屬性是離散的而有的是連續(xù)值或混合式的。目前普遍認(rèn)為不存在某種方法能適合于各種特點(diǎn)的數(shù)據(jù)。

聚類(clustering):沒有先驗(yàn)標(biāo)準(zhǔn),完全依靠事先的聚類原則(距離,近鄰等),進(jìn)行類別劃分,效果好壞取決于聚類原則的選取。

是指根據(jù)“物以類聚”的原理,將本身沒有類別的樣本聚集成不同的組,這樣的一組數(shù)據(jù)對(duì)象的集合叫做簇,并且對(duì)每一個(gè)這樣的簇進(jìn)行描述的過程。它的目的是使得屬于同一個(gè)簇的樣本之間應(yīng)該彼此相似,而不同簇的樣本應(yīng)該足夠不相似。與分類規(guī)則不同,進(jìn)行聚類前并不知道將要?jiǎng)澐殖蓭讉€(gè)組和什么樣的組,也不知道根據(jù)哪些空間區(qū)分規(guī)則來定義組。其目的旨在發(fā)現(xiàn)空間實(shí)體的屬性間的函數(shù)關(guān)系,挖掘的知識(shí)用以屬性名為變量的數(shù)學(xué)方程來表示。當(dāng)前,聚類技術(shù)正在蓬勃發(fā)展,涉及范圍包括數(shù)據(jù)挖掘、統(tǒng)計(jì)學(xué)、機(jī)器學(xué)習(xí)、空間數(shù)據(jù)庫技術(shù)、生物學(xué)以及市場營銷等領(lǐng)域,聚類分析已經(jīng)成為數(shù)據(jù)挖掘研究領(lǐng)域中一個(gè)非?;钴S的研究課題。常見的聚類算法包括:K-均值聚類算法、K-中心點(diǎn)聚類算法、CLARANS、BIRCH、CLIQUE、DBSCAN等。
       通常,為有監(jiān)督分類提供若干已標(biāo)記的模式(預(yù)分類過),需要解決的問題是為一個(gè)新遇到的但無標(biāo)記的模式進(jìn)行標(biāo)記。在典型的情況下,先將給定的無標(biāo)記的模式用來學(xué)習(xí)〔訓(xùn)練),反過來再用來標(biāo)記一個(gè)新模式。聚類需要解決的問題是將已給定的若千無標(biāo)記的模式聚集起來使之成為有意義的聚類。從某種意義上說,標(biāo)記也與聚類相關(guān),但這些類型的標(biāo)記是由數(shù)據(jù)驅(qū)動(dòng)的,也就是說,只是從數(shù)據(jù)中得到這些標(biāo)記。聚類與數(shù)據(jù)挖掘中的分類不同,在分類模塊中,對(duì)于目標(biāo)數(shù)據(jù)庫中存在哪些類是知道的,要做的就是將每一條記錄分別屬于哪一類標(biāo)記出來:與此相似但又不同的是,聚類是在預(yù)先不知道目標(biāo)數(shù)據(jù)庫到底有多少類的情況下,希望將所有的記錄組成不同的類或者說“聚類”,并且使得在這種分類情況下,以某種度量為標(biāo)準(zhǔn)的相似性,在同一聚類之間最小化,而在不同聚類之間最大化。事實(shí)上,聚類算法中很多算法的相似性都是基于距離的,而且由于現(xiàn)實(shí)數(shù)據(jù)庫中數(shù)據(jù)類型的多樣性,關(guān)于如何度量兩個(gè)含有非數(shù)值型字段的記錄之間的距離的討論有很多,并提出了相應(yīng)的算法。在很多應(yīng)用中,聚類分析得到的每一個(gè)類中的成員都可以被統(tǒng)一看待。


數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼

若不方便掃碼,搜微信號(hào):CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個(gè)參數(shù)驗(yàn)證碼對(duì)象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個(gè)配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺(tái)檢測(cè)極驗(yàn)服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時(shí)表示是新驗(yàn)證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請(qǐng)參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計(jì)時(shí)完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請(qǐng)輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請(qǐng)輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }