
1、字段抽取
字段截取函數:substr(x,start,stop)
[python] view plain copy
tel <- '18922254812';
#運營商
band <- substr(tel, 1, 3)
#地區(qū)
area <- substr(tel, 4, 7)
#號碼段
num <- substr(tel, 8, 11)
tels <- read.csv('1.csv');
#運營商
bands <- substr(tels[,1], 1, 3)
#地區(qū)
areas <- substr(tels[,1], 4, 7)
#號碼段
nums <- substr(tels[,1], 8, 11)
new_tels <- data.frame(tels, bands, areas, nums)
2、字段合并
字段合并,是指將同一個數據框中的不同列,進行合并,形成新的列
字符分割函數:paste(x1,x2,...,sep=" ")
[python] view plain copy
data <- read.table('1.csv', sep=' ')
p_data <- paste(data[,1], data[,2], data[,3], sep="")
newData <- data.frame(data, p_data)
3、記錄合并
將兩個結構相同的數據框,合并成一個數據框
記錄合并函數:rbind(dataFrame1,dataFrame2,...)
[python] view plain copy
data_1_1 <- read.table('1.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data_1_2 <- read.table('2.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data_1_3 <- read.table('3.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data <- rbind(data_1_1, data_1_2, data_1_3)
fix(data)
4、字段匹配
將不同結構的數據框,按照一定的條件進行合并(兩表合并)
字段匹配函數:merge(x,y,by.x,by.y)
[python] view plain copy
items <- read.table('1.csv', sep='|', header=FALSE, fileEncoding='utf-8')
fix(items)
prices <- read.table('2.csv', sep='|', header=FALSE, fileEncoding='utf-8')
fix(prices)
itemPrices <- merge(prices, items, by.x=c('V1'), by.y=c('V1'))
fix(itemPrices)
Join( )也可以用來實現兩表連接:
[python] view plain copy
inner_join(t1,t2,by=c("列名1","列名2"))
#功能等于:
merge(t1,t2,by.x="列名",by.y="列名")
#還有其他的join方式:
full_join 全連接
left_join 左連接
right_join 右連接
5、字符串處理高級技巧
[python] view plain copy
x <- c("Hellow", "World", "!")
#一、字符串長度
nchar(x)
#[1] 6 5 1
length(x)
#[1] 3
#二、字符串替換
chartr("HW", "ZX", x)
#[1] "Zellow" "Xorld" "!"
#三、字符串的大小寫轉換
tolower(x)
#[1] "hellow" "world" "!"
toupper(x)
#[1] "HELLOW" "WORLD" "!"
#四、字符串的拼接
paste("CK", 1:6, sep="")
#[1] "CK1" "CK2" "CK3" "CK4" "CK5" "CK6"
x <- list(a="aaa", b="bbb", c="ccc")
y <- list(d=1, e=2)
paste(x, y, sep="-")
#較短的向量被循環(huán)使用
#[1] "aaa-1" "bbb-2" "ccc-1"
#五、字符串切割
text <- "Hello word!"
strsplit(text, ' ')
#[[1]]
#[1] "Hello" "word!"
class(strsplit(text, ' '))
#[1] "list"
#有一種情況很特殊:
#如果split參數的字符長度為0,得到的結果就是一個個的字符:
strsplit(text, '')
#[[1]]
# [1] "H" "e" "l" "l" "o" " " "w" "o" "r" "d" "!"
#一個首字符大寫的綜合案例
capStringAll <- function(x)
{
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1, 1)), substring(s, 2),
sep = "", collapse = " ")
}
capStringAll("hello word")
#[1] "Hello Word"
capString <- function(x)
{
s <- strsplit(x, " ")[[1]]
s[1] <- paste(toupper(substring(s[1], 1, 1)), substring(s[1], 2), sep = "", collapse = " ");
paste(s, sep = "", collapse = " ")
}
capString("hello word")
#[1] "Hello word"
#六、字符串的查找
#grep, grepl: 返回pattern的匹配項。
#前者返回匹配項目的下標;后者返回邏輯值,x長度有多少,就返回多少個邏輯值。
#如果添加一個value參數,賦值為T,則返回匹配項的值。
text <- c("Company", "Coworker", "Cooperation", "Can")
grep("o", text)
#[1] 1 2 3
grepl("o", text)
#[1] TRUE TRUE TRUE FALSE
grep("o", text, value = T)
#[1] "Company" "Coworker" "Cooperation"
#七、字符串的替換
#sub, gsub: 返回用replacement替換匹配項之后的x(字符型向量)。
#前者只替換向量中每個元素的第一個匹配值,后者替換所有匹配值。
#注意以下兩個例子中"o"的替換方式。
sub("o", "xx", text)
#[1] "Cxxmpany" "Cxxworker" "Cxxoperation" "Can"
gsub("o", "xx", text)
#[1] "Cxxmpany" "Cxxwxxrker" "Cxxxxperatixxn" "Can"
#八、字符串的截取
x <- "123456789"
substr(x, 2, 4)
#[1] "234"
substring(x, c(2,4), c(4,5,8))
#[1] "234" "45" "2345678"
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數據處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數據庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數據分析師:表結構數據 “獲取 - 加工 - 使用” 全流程的賦能者 表結構數據(如數據庫表、Excel 表、CSV 文件)是企業(yè)數字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數據分析師:解鎖表結構數據特征價值的專業(yè)核心 表結構數據(以 “行 - 列” 規(guī)范存儲的結構化數據,如數據庫表、Excel 表、 ...
2025-09-17Excel 導入數據含缺失值?詳解 dropna 函數的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數據時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數據分析與統計學領域,假設檢驗是驗證研究假設、判斷數據差異是否 “ ...
2025-09-16CDA 數據分析師:掌控表格結構數據全功能周期的專業(yè)操盤手 表格結構數據(以 “行 - 列” 存儲的結構化數據,如 Excel 表、數據 ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數據分析師:激活表格結構數據價值的核心操盤手 表格結構數據(如 Excel 表格、數據庫表)是企業(yè)最基礎、最核心的數據形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數據爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數據的科學計數法問題 為幫助 Python 數據從業(yè)者解決pd.read_csv讀取長浮點數據時的科學計數法問題 ...
2025-09-12CDA 數據分析師:業(yè)務數據分析步驟的落地者與價值優(yōu)化者 業(yè)務數據分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數據把關的實戰(zhàn)指南 在業(yè)務系統落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數據驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數據分析師與戰(zhàn)略 / 業(yè)務數據分析:概念辨析與協同價值 在數據驅動決策的體系中,“戰(zhàn)略數據分析”“業(yè)務數據分析” 是企業(yè) ...
2025-09-11Excel 數據聚類分析:從操作實踐到業(yè)務價值挖掘 在數據分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數據中挖 ...
2025-09-10統計模型的核心目的:從數據解讀到決策支撐的價值導向 統計模型作為數據分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10