
數(shù)據(jù)分析中缺失值的處理方法
1、缺失值的分類
按照數(shù)據(jù)缺失機(jī)制可分為:
(1) 完全隨機(jī)缺失(missing completely at random, MCAR)
所缺失的數(shù)據(jù)發(fā)生的概率既與已觀察到的數(shù)據(jù)無關(guān),也與未觀察到的數(shù)據(jù)無關(guān).
(2) 隨機(jī)缺失(missing at random, MAR)
假設(shè)缺失數(shù)據(jù)發(fā)生的概率與所觀察到的變量是有關(guān)的,而與未觀察到的數(shù)據(jù)的特征是無關(guān)的
MCAR與MAR均被稱為是可忽略的缺失形式.
(3) 不可忽略的缺失(non-ignorable missing ,NIM)亦稱為非隨機(jī)缺失(not missing at random, NMAR),也有研究將其稱為MNAR(missing not at random)
如果不完全變量中數(shù)據(jù)的缺失既依賴于完全變量又依賴于不完全變量本身,這種缺失即為不可忽略的缺失.
2、缺失值的處理方法
對于缺失值的處理,從總體上來說分為刪除存在缺失值的個案和缺失值插補(bǔ)。對于主觀數(shù)據(jù),人將影響數(shù)據(jù)的真實(shí)性,存在缺失值的樣本的其他屬性的真實(shí)值不能保證,那么依賴于這些屬性值的插補(bǔ)也是不可靠的,所以對于主觀數(shù)據(jù)一般不推薦插補(bǔ)的方法。插補(bǔ)主要是針對客觀數(shù)據(jù),它的可靠性有保證。
1.刪除含有缺失值的個案
有簡單刪除法和權(quán)重法。簡單刪除法是對缺失值進(jìn)行處理的最原始方法。它將存在缺失值的個案刪除。如果數(shù)據(jù)缺失問題可以通過簡單的刪除小部分樣本來達(dá)到目標(biāo),那么這個方法是最有效的。當(dāng)缺失值的類型為非完全隨機(jī)缺失的時候,可以通過對完整的數(shù)據(jù)加權(quán)來減小偏差。把數(shù)據(jù)不完全的個案標(biāo)記后,將完整的數(shù)據(jù)個案賦予不同的權(quán)重,個案的權(quán)重可以通過logistic或probit回歸求得。如果解釋變量中存在對權(quán)重估計(jì)起決定行因素的變量,那么這種方法可以有效減小偏差。如果解釋變量和權(quán)重并不相關(guān),它并不能減小偏差。對于存在多個屬性缺失的情況,就需要對不同屬性的缺失組合賦不同的權(quán)重,這將大大增加計(jì)算的難度,降低預(yù)測的準(zhǔn)確性,這時權(quán)重法并不理想。
2.可能值插補(bǔ)缺失值
它的思想來源是以最可能的值來插補(bǔ)缺失值比全部刪除不完全樣本所產(chǎn)生的信息丟失要少。在數(shù)據(jù)挖掘中,面對的通常是大型的數(shù)據(jù)庫,它的屬性有幾十個甚至幾百個,因?yàn)橐粋€屬性值的缺失而放棄大量的其他屬性值,這種刪除是對信息的極大浪費(fèi),所以產(chǎn)生了以可能值對缺失值進(jìn)行插補(bǔ)的思想與方法。常用的有如下幾種方法。
(1)均值插補(bǔ)。數(shù)據(jù)的屬性分為定距型和非定距型。如果缺失值是定距型的,就以該屬性存在值的平均值來插補(bǔ)缺失的值;如果缺失值是非定距型的,就根據(jù)統(tǒng)計(jì)學(xué)中的眾數(shù)原理,用該屬性的眾數(shù)(即出現(xiàn)頻率最高的值)來補(bǔ)齊缺失的值。
(2)利用同類均值插補(bǔ)。同均值插補(bǔ)的方法都屬于單值插補(bǔ),不同的是,它用層次聚類模型預(yù)測缺失變量的類型,再以該類型的均值插補(bǔ)。假設(shè)X= (X1,X2…Xp)為信息完全的變量,Y為存在缺失值的變量,那么首先對X或其子集行聚類,然后按缺失個案所屬類來插補(bǔ)不同類的均值。如果在以后統(tǒng)計(jì)分析中還需以引入的解釋變量和Y做分析,那么這種插補(bǔ)方法將在模型中引入自相關(guān),給分析造成障礙。
(3)極大似然估計(jì)(Max Likelihood ,ML)。在缺失類型為隨機(jī)缺失的條件下,假設(shè)模型對于完整的樣本是正確的,那么通過觀測數(shù)據(jù)的邊際分布可以對未知參數(shù)進(jìn)行極大似然估計(jì)(Little and Rubin)。這種方法也被稱為忽略缺失值的極大似然估計(jì),對于極大似然的參數(shù)估計(jì)實(shí)際中常采用的計(jì)算方法是期望值最大化(Expectation Maximization,EM)。該方法比刪除個案和單值插補(bǔ)更有吸引力,它一個重要前提:適用于大樣本。有效樣本的數(shù)量足夠以保證ML估計(jì)值是漸近無偏的并服從正態(tài)分布。但是這種方法可能會陷入局部極值,收斂速度也不是很快,并且計(jì)算很復(fù)雜。
(4)多重插補(bǔ)(Multiple Imputation,MI)。多值插補(bǔ)的思想來源于貝葉斯估計(jì),認(rèn)為待插補(bǔ)的值是隨機(jī)的,它的值來自于已觀測到的值。具體實(shí)踐上通常是估計(jì)出待插補(bǔ)的值,然后再加上不同的噪聲,形成多組可選插補(bǔ)值。根據(jù)某種選擇依據(jù),選取最合適的插補(bǔ)值。
多重插補(bǔ)方法分為三個步驟:①為每個空值產(chǎn)生一套可能的插補(bǔ)值,這些值反映了無響應(yīng)模型的不確定性;每個值都可以被用來插補(bǔ)數(shù)據(jù)集中的缺失值,產(chǎn)生若干個完整數(shù)據(jù)集合。②每個插補(bǔ)數(shù)據(jù)集合都用針對完整數(shù)據(jù)集的統(tǒng)計(jì)方法進(jìn)行統(tǒng)計(jì)分析。③對來自各個插補(bǔ)數(shù)據(jù)集的結(jié)果,根據(jù)評分函數(shù)進(jìn)行選擇,產(chǎn)生最終的插補(bǔ)值。
假設(shè)一組數(shù)據(jù),包括三個變量Y1,Y2,Y3,它們的聯(lián)合分布為正態(tài)分布,將這組數(shù)據(jù)處理成三組,A組保持原始數(shù)據(jù),B組僅缺失Y3,C組缺失Y1和Y2。在多值插補(bǔ)時,對A組將不進(jìn)行任何處理,對B組產(chǎn)生Y3的一組估計(jì)值(作Y3關(guān)于Y1,Y2的回歸),對C組作產(chǎn)生Y1和Y2的一組成對估計(jì)值(作Y1,Y2關(guān)于Y3的回歸)。
當(dāng)用多值插補(bǔ)時,對A組將不進(jìn)行處理,對B、C組將完整的樣本隨機(jī)抽取形成為m組(m為可選擇的m組插補(bǔ)值),每組個案數(shù)只要能夠有效估計(jì)參數(shù)就可以了。對存在缺失值的屬性的分布作出估計(jì),然后基于這m組觀測值,對于這m組樣本分別產(chǎn)生關(guān)于參數(shù)的m組估計(jì)值,給出相應(yīng)的預(yù)測即,這時采用的估計(jì)方法為極大似然法,在計(jì)算機(jī)中具體的實(shí)現(xiàn)算法為期望最大化法(EM)。對B組估計(jì)出一組Y3的值,對C將利用 Y1,Y2,Y3它們的聯(lián)合分布為正態(tài)分布這一前提,估計(jì)出一組(Y1,Y2)。
上例中假定了Y1,Y2,Y3的聯(lián)合分布為正態(tài)分布。這個假設(shè)是人為的,但是已經(jīng)通過驗(yàn)證(Graham和Schafer于1999),非正態(tài)聯(lián)合分布的變量,在這個假定下仍然可以估計(jì)到很接近真實(shí)值的結(jié)果。
多重插補(bǔ)和貝葉斯估計(jì)的思想是一致的,但是多重插補(bǔ)彌補(bǔ)了貝葉斯估計(jì)的幾個不足。
(1)貝葉斯估計(jì)以極大似然的方法估計(jì),極大似然的方法要求模型的形式必須準(zhǔn)確,如果參數(shù)形式不正確,將得到錯誤得結(jié)論,即先驗(yàn)分布將影響后驗(yàn)分布的準(zhǔn)確性。而多重插補(bǔ)所依據(jù)的是大樣本漸近完整的數(shù)據(jù)的理論,在數(shù)據(jù)挖掘中的數(shù)據(jù)量都很大,先驗(yàn)分布將極小的影響結(jié)果,所以先驗(yàn)分布的對結(jié)果的影響不大。
(2)貝葉斯估計(jì)僅要求知道未知參數(shù)的先驗(yàn)分布,沒有利用與參數(shù)的關(guān)系。而多重插補(bǔ)對參數(shù)的聯(lián)合分布作出了估計(jì),利用了參數(shù)間的相互關(guān)系。
以上四種插補(bǔ)方法,對于缺失值的類型為隨機(jī)缺失的插補(bǔ)有很好的效果。兩種均值插補(bǔ)方法是最容易實(shí)現(xiàn)的,也是以前人們經(jīng)常使用的,但是它對樣本存在極大的干擾,尤其是當(dāng)插補(bǔ)后的值作為解釋變量進(jìn)行回歸時,參數(shù)的估計(jì)值與真實(shí)值的偏差很大。相比較而言,極大似然估計(jì)和多重插補(bǔ)是兩種比較好的插補(bǔ)方法,與多重插補(bǔ)對比,極大似然缺少不確定成分,所以越來越多的人傾向于使用多重插補(bǔ)方法。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗(yàn):捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03