
應(yīng)聘數(shù)據(jù)挖掘崗位之前,先看看這5個(gè)問題的答案
「 關(guān)于數(shù)據(jù)挖掘就業(yè)方面的問題」,這是近期有人在知乎上的提問,題主順帶也把這個(gè)大問題細(xì)化成了幾個(gè)小問題:
數(shù)據(jù)挖掘主要是做算法還是做應(yīng)用?分別都要求什么?
北上廣以外的普通公司用的多嗎?待遇如何?
和前端后端程序員比有什么區(qū)別?有什么優(yōu)缺點(diǎn)?
目前在學(xué)習(xí)機(jī)器學(xué)習(xí),如果想找數(shù)據(jù)挖掘方面的工作應(yīng)該學(xué)習(xí)哪些內(nèi)容?
hadoop,hive之類的需要學(xué)習(xí)嗎?
今天收錄在這里的,是目前獲贊最高的回答。答主紀(jì)路分別就以上5個(gè)問題給出了比較有針對性的回答,分享給大家。
最近在招聘這方面的工程師,我想通過回答題主的這些問題,來幫助一些新人選擇方向和正確的入門。
1.數(shù)據(jù)挖掘主要是做算法還是做應(yīng)用?分別都要求什么?
這個(gè)問題太籠統(tǒng),基本上算法和應(yīng)用是兩個(gè)人來做的,可能是數(shù)據(jù)挖掘職位。做算法的比較少,也比較高級(jí),其實(shí)所謂做算法大多數(shù)時(shí)候都不是設(shè)計(jì)新的算法(這個(gè)可以寫論文了),更多的是技術(shù)選型,特征工程抽取,最多是實(shí)現(xiàn)一些已經(jīng)有論文但是還沒有開源模塊的算法等,還是要求扎實(shí)的算法和數(shù)據(jù)結(jié)構(gòu)功底,以及豐富的分布式計(jì)算的知識(shí)的,以及不錯(cuò)的英文閱讀和寫作能力。但即使是這樣也是百里挑一的,很難找到。
絕大多數(shù)數(shù)據(jù)挖掘崗位都是做應(yīng)用,數(shù)據(jù)清洗,用現(xiàn)成的庫建模,如果你自己不往算法或者架構(gòu)方面繼續(xù)提升,和其他的開發(fā)崗位的性質(zhì)基本沒什么不同,只要會(huì)編程都是很容易入門的。
2.北上廣以外的普通公司用的多嗎?待遇如何?
實(shí)際情況不太清楚,由于數(shù)據(jù)挖掘和大數(shù)據(jù)這個(gè)概念太火了,肯定到處都有人招聘響應(yīng)的崗位,但是二線城市可能僅僅是停留在概念上,很多實(shí)際的工作并沒有接觸到足夠大的數(shù)據(jù),都是生搬硬套框架(從我面試的人的工作經(jīng)驗(yàn)上看即使是在北上廣深這種情況也比較多見)。只是在北上廣深,可能接觸到大數(shù)據(jù)的機(jī)會(huì)多一些。而且做數(shù)據(jù)挖掘現(xiàn)在熱點(diǎn)的技術(shù)比如Python,Spark,Scala,R這些技術(shù)除了在一線城市之外基本上沒有足夠的市場(因?yàn)闀?huì)的人太少了,二線城市的公司找不到掌握這些技術(shù)的人,不招也沒人學(xué)),所以我推測二線城市最多的還是用JAVA+Hadoop,或者用JAVA寫一些Spark程序。北上廣深和二線城市程序員比待遇是欺負(fù)人,就不討論了。
3.和前端后端程序員比有什么區(qū)別?有什么優(yōu)缺點(diǎn)?
和傳統(tǒng)的前后端程序員相比,最主要的區(qū)別就是對編程水平的要求。從我招聘的情況來看,做數(shù)據(jù)挖掘的人編程水平要求可以降低一個(gè)檔次,甚至都不用掌握面向?qū)ο?。但是要求技術(shù)全面,編程、SQL,Linux,正則表達(dá)式,Hadoop,Spark,爬蟲,機(jī)器學(xué)習(xí)模型等技術(shù)都要掌握一些。前后端可能是要求精深,數(shù)據(jù)挖掘更強(qiáng)調(diào)廣博,有架構(gòu)能力更好。
4.目前在學(xué)習(xí)機(jī)器學(xué)習(xí),如果想找數(shù)據(jù)挖掘方面的工作應(yīng)該學(xué)習(xí)哪些內(nèi)容?
打基礎(chǔ)是最重要的,學(xué)習(xí)一門數(shù)據(jù)挖掘常用的語言,比如Python,Scala,R;學(xué)習(xí)足夠的Linux經(jīng)驗(yàn),能夠通過awk,grep等Linux命令快速的處理文本文件。掌握SQL,MySQL或者PostgreSQL都是比較常用的關(guān)系型數(shù)據(jù)庫,搞數(shù)據(jù)的別跟我說不會(huì)用數(shù)據(jù)庫。
補(bǔ)充的一些技能,比如NoSQL的使用,Elasticsearch的使用,分詞(jieba等模塊的使用),算法的數(shù)據(jù)結(jié)構(gòu)的知識(shí)。
5.hadoop,hive之類的需要學(xué)習(xí)嗎?
我覺得應(yīng)當(dāng)學(xué)習(xí),首先Hadoop和Hive很簡單(如果你用AWS的話你可以開一臺(tái)EMR,上面直接就有Hadoop和Hive,可以直接從使用學(xué)起)。我覺得如果不折騰安裝和部署,還有Linux和MySQL的經(jīng)驗(yàn),只要半天到一天就能熟悉Hadoop和Hive的使用(當(dāng)然你得有Linux和MySQL的基礎(chǔ),如果沒有就先老老實(shí)實(shí)的學(xué)Linux和MySQL,這兩個(gè)都可以在自己的PC上安裝,自己折騰)。
Spark對很多人來說才是需要學(xué)習(xí)的,如果你有JAVA經(jīng)驗(yàn)大可以從JAVA入門。如果沒有那么還是建議從Scala入門,但是實(shí)際上如果沒有JAVA經(jīng)驗(yàn),Scala入門也會(huì)有一定難度,但是可以慢慢補(bǔ)。所以總的來說Spark才足夠難,以至于需要學(xué)習(xí)。
最后的最后我有一些建議。
第一要對自己有一個(gè)系統(tǒng)的認(rèn)知,自己的編程水平夠么,SQL會(huì)用么,Linux會(huì)用么,能流暢的看英文文檔么?如果上面任何一個(gè)問題的答案是No,我都不建議直接轉(zhuǎn)行或者申請高級(jí)的數(shù)據(jù)挖掘職位(因?yàn)槟愫茈y找到一個(gè)正經(jīng)的數(shù)據(jù)挖掘崗位,頂多是一些打擦邊球的崗位,無論是實(shí)際干的工作還是未來的成長可能對你的幫助都不大)。
無論你現(xiàn)在是學(xué)生還是已經(jīng)再做一些前段后端、運(yùn)維之類的工作你都有足夠的時(shí)間補(bǔ)齊這些基礎(chǔ)知識(shí)。補(bǔ)齊了這些知識(shí)之后,第一件事就是了解大數(shù)據(jù)生態(tài),Hadoop生態(tài)圈,Spark生態(tài)圈,機(jī)器學(xué)習(xí),深度學(xué)習(xí)(后兩者需要高等數(shù)學(xué)和線性代數(shù)基礎(chǔ),如果你的大學(xué)專業(yè)學(xué)這些不要混)。
選定其中一個(gè)方向做一些鉆研和學(xué)習(xí),網(wǎng)上有很多現(xiàn)成的資料(基本上是英文的,所以我說了,不能看英文的趕緊去背單詞),科學(xué)上網(wǎng)用谷歌這個(gè)大家都懂。希望我的建議能對你有一些幫助。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10