
Python yield 使用方法淺析
本篇文章主要介紹了Python yield 使用方法淺析,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。
如何生成斐波那契數(shù)列
斐波那契(Fibonacci)數(shù)列是一個非常簡單的遞歸數(shù)列,除第一個和第二個數(shù)外,任意一個數(shù)都可由前兩個數(shù)相加得到。用計算機程序輸出斐波那契數(shù)列的前 N 個數(shù)是一個非常簡單的問題,許多初學(xué)者都可以輕易寫出如下函數(shù):
清單 1. 簡單輸出斐波那契數(shù)列前 N 個數(shù)
def fab(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
執(zhí)行 fab(5),我們可以得到如下輸出:
>>> fab(5)
1
1
2
3
5
結(jié)果沒有問題,但有經(jīng)驗的開發(fā)者會指出,直接在 fab 函數(shù)中用 print 打印數(shù)字會導(dǎo)致該函數(shù)可復(fù)用性較差,因為 fab 函數(shù)返回 None,其他函數(shù)無法獲得該函數(shù)生成的數(shù)列。
要提高 fab 函數(shù)的可復(fù)用性,最好不要直接打印出數(shù)列,而是返回一個 List。以下是 fab 函數(shù)改寫后的第二個版本:
清單 2. 輸出斐波那契數(shù)列前 N 個數(shù)第二版
def fab(max):
n, a, b = 0, 0, 1
L = []
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L
可以使用如下方式打印出 fab 函數(shù)返回的 List:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
改寫后的 fab 函數(shù)通過返回 List 能滿足復(fù)用性的要求,但是更有經(jīng)驗的開發(fā)者會指出,該函數(shù)在運行中占用的內(nèi)存會隨著參數(shù) max 的增大而增大,如果要控制內(nèi)存占用,最好不要用 List來保存中間結(jié)果,而是通過 iterable 對象來迭代。例如,在 Python2.x 中,代碼:
清單 3. 通過 iterable 對象來迭代
for i in range(1000): pass會導(dǎo)致生成一個 1000 個元素的 List,而代碼:
for i in xrange(1000): pass則不會生成一個 1000 個元素的 List,而是在每次迭代中返回下一個數(shù)值,內(nèi)存空間占用很小。因為 xrange 不返回 List,而是返回一個 iterable 對象。
利用 iterable 我們可以把 fab 函數(shù)改寫為一個支持 iterable 的 class,以下是第三個版本的 Fab:
清單 4. 第三個版本
class Fab(object):
def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1
def __iter__(self):
return self
def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()
Fab 類通過 next() 不斷返回數(shù)列的下一個數(shù),內(nèi)存占用始終為常數(shù):
>>> for n in Fab(5):
... print n
...
1
1
2
3
5
然而,使用 class 改寫的這個版本,代碼遠遠沒有第一版的 fab 函數(shù)來得簡潔。如果我們想要保持第一版 fab 函數(shù)的簡潔性,同時又要獲得 iterable 的效果,yield 就派上用場了:
清單 5. 使用 yield 的第四版
def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
# print b
a, b = b, a + b
n = n + 1
'''
第四個版本的 fab 和第一版相比,僅僅把 print b 改為了 yield b,就在保持簡潔性的同時獲得了 iterable 的效果。
調(diào)用第四版的 fab 和第二版的 fab 完全一致:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
簡單地講,yield 的作用就是把一個函數(shù)變成一個 generator,帶有 yield 的函數(shù)不再是一個普通函數(shù),Python 解釋器會將其視為一個 generator,調(diào)用 fab(5) 不會執(zhí)行 fab 函數(shù),而是返回一個 iterable 對象!在 for 循環(huán)執(zhí)行時,每次循環(huán)都會執(zhí)行 fab 函數(shù)內(nèi)部的代碼,執(zhí)行到 yield b 時,fab 函數(shù)就返回一個迭代值,下次迭代時,代碼從 yield b 的下一條語句繼續(xù)執(zhí)行,而函數(shù)的本地變量看起來和上次中斷執(zhí)行前是完全一樣的,于是函數(shù)繼續(xù)執(zhí)行,直到再次遇到 yield。
也可以手動調(diào)用 fab(5) 的 next() 方法(因為 fab(5) 是一個 generator 對象,該對象具有 next() 方法),這樣我們就可以更清楚地看到 fab 的執(zhí)行流程:
清單 6. 執(zhí)行流程
>>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
當(dāng)函數(shù)執(zhí)行結(jié)束時,generator 自動拋出 StopIteration 異常,表示迭代完成。在 for 循環(huán)里,無需處理 StopIteration 異常,循環(huán)會正常結(jié)束。
我們可以得出以下結(jié)論:
一個帶有 yield 的函數(shù)就是一個 generator,它和普通函數(shù)不同,生成一個 generator 看起來像函數(shù)調(diào)用,但不會執(zhí)行任何函數(shù)代碼,直到對其調(diào)用 next()(在 for 循環(huán)中會自動調(diào)用 next())才開始執(zhí)行。雖然執(zhí)行流程仍按函數(shù)的流程執(zhí)行,但每執(zhí)行到一個 yield 語句就會中斷,并返回一個迭代值,下次執(zhí)行時從 yield 的下一個語句繼續(xù)執(zhí)行??雌饋砭秃孟褚粋€函數(shù)在正常執(zhí)行的過程中被 yield 中斷了數(shù)次,每次中斷都會通過 yield 返回當(dāng)前的迭代值。
yield 的好處是顯而易見的,把一個函數(shù)改寫為一個 generator 就獲得了迭代能力,比起用類的實例保存狀態(tài)來計算下一個 next() 的值,不僅代碼簡潔,而且執(zhí)行流程異常清晰。
如何判斷一個函數(shù)是否是一個特殊的 generator 函數(shù)?可以利用 isgeneratorfunction 判斷:
清單 7. 使用 isgeneratorfunction 判斷
>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True
要注意區(qū)分 fab 和 fab(5),fab 是一個 generator function,而 fab(5) 是調(diào)用 fab 返回的一個 generator,好比類的定義和類的實例的區(qū)別:
清單 8. 類的定義和類的實例
>>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True
fab 是無法迭代的,而 fab(5) 是可迭代的:
>>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True
每次調(diào)用 fab 函數(shù)都會生成一個新的 generator 實例,各實例互不影響:
>>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5
return 的作用
在一個 generator function 中,如果沒有 return,則默認執(zhí)行至函數(shù)完畢,如果在執(zhí)行過程中 return,則直接拋出 StopIteration 終止迭代。
另一個例子
另一個 yield 的例子來源于文件讀取。如果直接對文件對象調(diào)用 read() 方法,會導(dǎo)致不可預(yù)測的內(nèi)存占用。好的方法是利用固定長度的緩沖區(qū)來不斷讀取文件內(nèi)容。通過 yield,我們不再需要編寫讀文件的迭代類,就可以輕松實現(xiàn)文件讀?。?br />
清單 9. 另一個 yield 的例子
def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11