
Python實(shí)現(xiàn)的幾個(gè)常用排序算法實(shí)例
前段時(shí)間為準(zhǔn)備百度面試惡補(bǔ)的東西,雖然最后還是被刷了,還是把那幾天的“戰(zhàn)利品”放點(diǎn)上來(lái),算法一直是自己比較薄弱的地方,以后還要更加努力啊。
下面用Python實(shí)現(xiàn)了幾個(gè)常用的排序,如快速排序,選擇排序,以及二路并歸排序等等。
def directInsertSort(seq):
""" 直接插入排序 """
size = len(seq)
for i in range(1,size):
tmp, j = seq[i], i
while j > 0 and tmp < seq[j-1]:
seq[j], j = seq[j-1], j-1
seq[j] = tmp
return seq
def directSelectSort(seq):
""" 直接選擇排序 """
size = len(seq)
for i in range(0,size - 1):
k = i;j = i+1
while j < size:
if seq[j] < seq[k]:
k = j
j += 1
seq[i],seq[k] = seq[k],seq[i]
return seq
def bubbleSort(seq):
"""冒泡排序"""
size = len(seq)
for i in range(1,size):
for j in range(0,size-i):
if seq[j+1] < seq[j]:
seq[j+1],seq[j] = seq[j],seq[j+1]
return seq
def _divide(seq, low, high):
"""快速排序劃分函數(shù)"""
tmp = seq[low]
while low != high:
while low < high and seq[high] >= tmp: high -= 1
if low < high:
seq[low] = seq[high]
low += 1
while low < high and seq[low] <= tmp: low += 1
if low < high:
seq[high] = seq[low]
high -= 1
seq[low] = tmp
return low
def _quickSort(seq, low, high):
"""快速排序輔助函數(shù)"""
if low >= high: return
mid = _divide(seq, low, high)
_quickSort(seq, low, mid - 1)
_quickSort(seq, mid + 1, high)
def quickSort(seq):
"""快速排序包裹函數(shù)"""
size = len(seq)
_quickSort(seq, 0, size - 1)
return seq
def merge(seq, left, mid, right):
tmp = []
i, j = left, mid
while i < mid and j <= right:
if seq[i] < seq[j]:
tmp.append(seq[i])
i += 1
else:
tmp.append(seq[j])
j += 1
if i < mid: tmp.extend(seq[i:])
if j <= right: tmp.extend(seq[j:])
seq[left:right+1] = tmp[0:right-left+1]
def _mergeSort(seq, left, right):
if left == right:
return
else:
mid = (left + right) / 2
_mergeSort(seq, left, mid)
_mergeSort(seq, mid + 1, right)
merge(seq, left, mid+1, right)
#二路并歸排序
def mergeSort(seq):
size = len(seq)
_mergeSort(seq, 0, size - 1)
return seq
if __name__ == '__main__':
s = [random.randint(0,100) for i in range(0,20)]
print s
print "\n"
print directSelectSort(copy(s))
print directInsertSort(copy(s))
print bubbleSort(copy(s))
print quickSort(copy(s))
print mergeSort(copy(s))
運(yùn)行結(jié)果如下:
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
訓(xùn)練與驗(yàn)證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過(guò)程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對(duì)數(shù)據(jù)的需求已從 “存儲(chǔ)” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計(jì)基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計(jì)基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語(yǔ)言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11