
Python實(shí)現(xiàn)二分查找與bisect模塊詳解
其實(shí)Python的列表(list)內(nèi)部實(shí)現(xiàn)是一個(gè)數(shù)組,也就是一個(gè)線性表。在列表中查找元素可以使用 list.index() 方法,其時(shí)間復(fù)雜度為O(n) 。對于大數(shù)據(jù)量,則可以用二分查找進(jìn)行優(yōu)化。
二分查找要求對象必須有序,其基本原理如下:
1.從數(shù)組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結(jié)束;
2.如果某一特定元素大于或者小于中間元素,則在數(shù)組大于或小于中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。
3.如果在某一步驟數(shù)組為空,則代表找不到。
二分查找也成為折半查找,算法每一次比較都使搜索范圍縮小一半, 其時(shí)間復(fù)雜度為 O(logn)。
我們分別用遞歸和循環(huán)來實(shí)現(xiàn)二分查找:
接著對這兩種實(shí)現(xiàn)進(jìn)行一下性能測試:
if __name__ == "__main__":
import random
lst = [random.randint(0, 10000) for _ in xrange(100000)]
lst.sort()
def test_recursion():
binary_search_recursion(lst, 999, 0, len(lst)-1)
def test_loop():
binary_search_loop(lst, 999)
import timeit
t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")
print "Recursion:", t1.timeit()
print "Loop:", t2.timeit()
執(zhí)行結(jié)果如下:
Recursion: 3.12596702576
Loop: 2.08254289627
可以看出循環(huán)方式比遞歸效率高。
bisect 模塊
Python 有一個(gè) bisect 模塊,用于維護(hù)有序列表。bisect 模塊實(shí)現(xiàn)了一個(gè)算法用于插入元素到有序列表。在一些情況下,這比反復(fù)排序列表或構(gòu)造一個(gè)大的列表再排序的效率更高。Bisect 是二分法的意思,這里使用二分法來排序,它會將一個(gè)元素插入到一個(gè)有序列表的合適位置,這使得不需要每次調(diào)用 sort 的方式維護(hù)有序列表。
下面是一個(gè)簡單的使用示例:
import bisect
import random
random.seed(1)
print'New Pos Contents'
print'--- --- --------'
l = []
for i in range(1, 15):
r = random.randint(1, 100)
position = bisect.bisect(l, r)
bisect.insort(l, r)
print'%3d %3d' % (r, position), l
輸出結(jié)果:
New Pos Contents
--- --- --------
14 0 [14]
85 1 [14, 85]
77 1 [14, 77, 85]
26 1 [14, 26, 77, 85]
50 2 [14, 26, 50, 77, 85]
45 2 [14, 26, 45, 50, 77, 85]
66 4 [14, 26, 45, 50, 66, 77, 85]
79 6 [14, 26, 45, 50, 66, 77, 79, 85]
10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
Bisect模塊提供的函數(shù)有:
bisect.bisect_left(a,x, lo=0, hi=len(a)) :
查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的區(qū)間,默認(rèn)是使用整個(gè)列表。如果 x 已經(jīng)存在,在其左邊插入。返回值為 index。
bisect.bisect_right(a,x, lo=0, hi=len(a))
bisect.bisect(a, x,lo=0, hi=len(a)) :
這2個(gè)函數(shù)和 bisect_left 類似,但如果 x 已經(jīng)存在,在其右邊插入。
bisect.insort_left(a,x, lo=0, hi=len(a)) :
在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。
bisect.insort_right(a,x, lo=0, hi=len(a))
bisect.insort(a, x,lo=0, hi=len(a)) :
和 insort_left 類似,但如果 x 已經(jīng)存在,在其右邊插入。
Bisect 模塊提供的函數(shù)可以分兩類: bisect* 只用于查找 index, 不進(jìn)行實(shí)際的插入;而 insort* 則用于實(shí)際插入。
該模塊比較典型的應(yīng)用是計(jì)算分?jǐn)?shù)等級:
def grade(score,breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect.bisect(breakpoints, score)
return grades[i]
print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]
執(zhí)行結(jié)果:
['F', 'A', 'C', 'C', 'B', 'A', 'A']
同樣,我們可以用 bisect 模塊實(shí)現(xiàn)二分查找:
def binary_search_bisect(lst, x):
from bisect import bisect_left
i = bisect_left(lst, x)
if i != len(lst) and lst[i] == x:
return i
return None
我們再來測試一下它與遞歸和循環(huán)實(shí)現(xiàn)的二分查找的性能:
Recursion: 4.00940990448
Loop: 2.6583480835
Bisect: 1.74922895432
可以看到其比循環(huán)實(shí)現(xiàn)略快,比遞歸實(shí)現(xiàn)差不多要快一半。
Python 著名的數(shù)據(jù)處理庫 numpy 也有一個(gè)用于二分查找的函數(shù) numpy.searchsorted, 用法與 bisect 基本相同,只不過如果要右邊插入時(shí),需要設(shè)置參數(shù) side='right',例如:
>>> import numpy as np
>>> from bisect import bisect_left, bisect_right
>>> data = [2, 4, 7, 9]
>>> bisect_left(data, 4)
1
>>> np.searchsorted(data, 4)
1
>>> bisect_right(data, 4)
2
>>> np.searchsorted(data, 4, side='right')
2
那么,我們再來比較一下性能:
In [20]: %timeit -n 100 bisect_left(data, 99999)
100 loops, best of 3: 670 ns per loop
In [21]: %timeit -n 100 np.searchsorted(data, 99999)
100 loops, best of 3: 56.9 ms per loop
In [22]: %timeit -n 100 bisect_left(data, 8888)
100 loops, best of 3: 961 ns per loop
In [23]: %timeit -n 100 np.searchsorted(data, 8888)
100 loops, best of 3: 57.6 ms per loop
In [24]: %timeit -n 100 bisect_left(data, 777777)
100 loops, best of 3: 670 ns per loop
In [25]: %timeit -n 100 np.searchsorted(data, 777777)
100 loops, best of 3: 58.4 ms per loop
可以發(fā)現(xiàn) numpy.searchsorted 效率是很低的,跟 bisect 根本不在一個(gè)數(shù)量級上。因此 searchsorted 不適合用于搜索普通的數(shù)組,但是它用來搜索 numpy.ndarray 是相當(dāng)快的:
In [30]: data_ndarray = np.arange(0, 1000000)
In [31]: %timeit np.searchsorted(data_ndarray, 99999)
The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 996 ns per loop
In [32]: %timeit np.searchsorted(data_ndarray, 8888)
The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 994 ns per loop
In [33]: %timeit np.searchsorted(data_ndarray, 777777)
The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 990 ns per loop
numpy.searchsorted 可以同時(shí)搜索多個(gè)值:
>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])
總結(jié)
以上就是這篇文章的全部內(nèi)容了,希望本文的內(nèi)容對大家學(xué)習(xí)或者使用python能有一定的幫助
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10