
Python基于numpy靈活定義神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的方法
這篇文章主要介紹了Python基于numpy靈活定義神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的方法,結(jié)合實(shí)例形式分析了神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的原理及Python具體實(shí)現(xiàn)方法,涉及Python使用numpy擴(kuò)展進(jìn)行數(shù)學(xué)運(yùn)算的相關(guān)操作技巧,需要的朋友可以參考下
本文實(shí)例講述了Python基于numpy靈活定義神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的方法。分享給大家供大家參考,具體如下:
用numpy可以靈活定義神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),還可以應(yīng)用numpy強(qiáng)大的矩陣運(yùn)算功能!
一、用法
1). 定義一個(gè)三層神經(jīng)網(wǎng)絡(luò):
說明:
輸入層節(jié)點(diǎn)數(shù)目:3
隱藏層節(jié)點(diǎn)數(shù)目:4
輸出層節(jié)點(diǎn)數(shù)目:2
2).定義一個(gè)五層神經(jīng)網(wǎng)絡(luò):
'''示例二'''
nn = NeuralNetworks([3,5,7,4,2]) # 定義神經(jīng)網(wǎng)絡(luò)
nn.fit(X,y) # 擬合
print(nn.predict(X)) #預(yù)測
說明:
輸入層節(jié)點(diǎn)數(shù)目:3
隱藏層1節(jié)點(diǎn)數(shù)目:5
隱藏層2節(jié)點(diǎn)數(shù)目:7
隱藏層3節(jié)點(diǎn)數(shù)目:4
輸出層節(jié)點(diǎn)數(shù)目:2
二、實(shí)現(xiàn)
如下實(shí)現(xiàn)方式為本人(@hhh5460)原創(chuàng)。 要點(diǎn): dtype=object
import numpy as np
class NeuralNetworks(object):
''''''
def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
'''搭建神經(jīng)網(wǎng)絡(luò)框架'''
# 各層節(jié)點(diǎn)數(shù)目 (向量)
self.n = np.array(n_layers) # 'n_layers必須為list類型,如:[3,4,2] 或 n_layers=[3,4,2]'
self.size = self.n.size # 層的總數(shù)
# 層 (向量)
self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
self.a = np.empty(self.size, dtype=object)
self.data_a = np.empty(self.size, dtype=object)
# 偏置 (向量)
self.b = np.empty(self.size, dtype=object)
self.delta_b = np.empty(self.size, dtype=object)
# 權(quán) (矩陣)
self.w = np.empty(self.size, dtype=object)
self.delta_w = np.empty(self.size, dtype=object)
# 填充
for i in range(self.size):
self.a[i] = np.zeros(self.n[i]) # 全零
self.z[i] = np.zeros(self.n[i]) # 全零
self.data_a[i] = np.zeros(self.n[i]) # 全零
if i < self.size - 1:
self.b[i] = np.ones(self.n[i+1]) # 全一
self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
mu, sigma = 0, 0.1 # 均值、方差
self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正態(tài)分布隨機(jī)化
self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
下面完整代碼是我學(xué)習(xí)斯坦福機(jī)器學(xué)習(xí)教程,完全自己敲出來的:
import numpy as np
'''
參考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
'''
class NeuralNetworks(object):
''''''
def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
'''搭建神經(jīng)網(wǎng)絡(luò)框架'''
self.n_iter = n_iter # 迭代次數(shù)
self.error = error # 允許最大誤差
self.alpha = alpha # 學(xué)習(xí)速率
self.lamda = lamda # 衰減因子 # 此處故意拼寫錯(cuò)誤!
if n_layers is None:
raise '各層的節(jié)點(diǎn)數(shù)目必須設(shè)置!'
elif not isinstance(n_layers, list):
raise 'n_layers必須為list類型,如:[3,4,2] 或 n_layers=[3,4,2]'
# 節(jié)點(diǎn)數(shù)目 (向量)
self.n = np.array(n_layers)
self.size = self.n.size # 層的總數(shù)
# 層 (向量)
self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
self.z = np.empty(self.size, dtype=object)
# 偏置 (向量)
self.b = np.empty(self.size, dtype=object)
self.delta_b = np.empty(self.size, dtype=object)
# 權(quán) (矩陣)
self.w = np.empty(self.size, dtype=object)
self.delta_w = np.empty(self.size, dtype=object)
# 殘差 (向量)
self.data_a = np.empty(self.size, dtype=object)
# 填充
for i in range(self.size):
self.a[i] = np.zeros(self.n[i]) # 全零
self.z[i] = np.zeros(self.n[i]) # 全零
self.data_a[i] = np.zeros(self.n[i]) # 全零
if i < self.size - 1:
self.b[i] = np.ones(self.n[i+1]) # 全一
self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
mu, sigma = 0, 0.1 # 均值、方差
self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正態(tài)分布隨機(jī)化
self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
# 激活函數(shù)
self.active_functions = {
'sigmoid': self.sigmoid,
'tanh': self.tanh,
'radb': self.radb,
'line': self.line,
}
# 激活函數(shù)的導(dǎo)函數(shù)
self.derivative_functions = {
'sigmoid': self.sigmoid_d,
'tanh': self.tanh_d,
'radb': self.radb_d,
'line': self.line_d,
}
if active_type is None:
self.active_type = ['sigmoid'] * (self.size - 1) # 默認(rèn)激活函數(shù)類型
else:
self.active_type = active_type
def sigmoid(self, z):
if np.max(z) > 600:
z[z.argmax()] = 600
return 1.0 / (1.0 + np.exp(-z))
def tanh(self, z):
return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
def radb(self, z):
return np.exp(-z * z)
def line(self, z):
return z
def sigmoid_d(self, z):
return z * (1.0 - z)
def tanh_d(self, z):
return 1.0 - z * z
def radb_d(self, z):
return -2.0 * z * np.exp(-z * z)
def line_d(self, z):
return np.ones(z.size) # 全一
def forward(self, x):
'''正向傳播(在線)'''
# 用樣本 x 走一遍,刷新所有 z, a
self.a[0] = x
for i in range(self.size - 1):
self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i]
self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函數(shù)
def err(self, X, Y):
'''誤差'''
last = self.size-1
err = 0.0
for x, y in zip(X, Y):
self.forward(x)
err += 0.5 * np.sum((self.a[last] - y)**2)
err /= X.shape[0]
err += sum([np.sum(w) for w in self.w[:last]**2])
return err
def backward(self, y):
'''反向傳播(在線)'''
last = self.size - 1
# 用樣本 y 走一遍,刷新所有delta_w, delta_b
self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函數(shù)的導(dǎo)函數(shù)
for i in range(last-1, 1, -1):
self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函數(shù)的導(dǎo)函數(shù)
# 計(jì)算偏導(dǎo)
p_w = np.outer(self.a[i], self.data_a[i+1]) # 外積!感謝 numpy 的強(qiáng)大!
p_b = self.data_a[i+1]
# 更新 delta_w, delta_w
self.delta_w[i] = self.delta_w[i] + p_w
self.delta_b[i] = self.delta_b[i] + p_b
def update(self, n_samples):
'''更新權(quán)重參數(shù)'''
last = self.size - 1
for i in range(last):
self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
def fit(self, X, Y):
'''擬合'''
for i in range(self.n_iter):
# 用所有樣本,依次
for x, y in zip(X, Y):
self.forward(x) # 前向,更新 a, z;
self.backward(y) # 后向,更新 delta_w, delta_b
# 然后,更新 w, b
self.update(len(X))
# 計(jì)算誤差
err = self.err(X, Y)
if err < self.error:
break
# 整千次顯示誤差(否則太無聊?。?br />
if i % 1000 == 0:
print('iter: {}, error: {}'.format(i, err))
def predict(self, X):
'''預(yù)測'''
last = self.size - 1
res = []
for x in X:
self.forward(x)
res.append(self.a[last])
return np.array(res)
if __name__ == '__main__':
nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定義神經(jīng)網(wǎng)絡(luò)
X = np.array([[0.,0.], # 準(zhǔn)備數(shù)據(jù)
[0.,1.],
[1.,0.],
[1.,1.]])
y = np.array([0,1,1,0])
nn.fit(X,y) # 擬合
print(nn.predict(X)) # 預(yù)測
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03