
SPSS調(diào)查問卷因子分析案例
因子分析(Factor Analysis)是一種非常有用的多變量分析技術。我想說,你要想學好多變量分析技術,一是:理解多元回歸分析,二是:理解因子分析;這是多變量分析技術的兩個出發(fā)點。為什么這么說呢?多元回歸分析是掌握有因變量影響關系的重點,無論什么分析,只要研究的變量有Y,也就是因變量,一般都是回歸思想,無非就是Y的測量尺度不同,選擇不同的變形方法。而因子分析則是研究沒有因變量和自變量之分的一組變量X1 X2 X3 ... Xn之間的關系。
在市場研究中,我們經(jīng)常要測量消費者的消費行為、態(tài)度、信仰和價值觀,當然最重要的是測量消費者的消費行為和態(tài)度!我們往往采用一組態(tài)度量表進行測量,用1-5打分或1-9打分,經(jīng)常提到的李克特量表。
上面的數(shù)據(jù)是我們?yōu)榱藴y量消費者的生活方式或者價值觀什么的,選擇了24個語句,讓消費者進行評估,同意還是不同意,像我還是不像,贊成還是不贊成等等,用1-9打分;
因子分析有探索性因子分析和證實性因子分析之分,這里我們主要討論探索性因子分析!證實性因子分析主要采用SEM結(jié)構(gòu)方程式來解決。
從探索性因子分析角度看:
?一種非常實用的多元統(tǒng)計分析方法;
?一種探索性變量分析技術;
?分析多變量相互依賴關系的方法;
?數(shù)據(jù)和變量的消減技術;
?其它細分技術的預處理過程;
我們?yōu)槭裁匆靡蜃臃治瞿兀?
首先,24個可測量的觀測變量之間的存在相互依賴關系,并且我們確信某些觀測變量指示了潛在的結(jié)構(gòu)-因子,也就是存在潛在的因子;而潛在的因子是不可觀測的,例如:真實的滿意度水平,購買的傾向性、收獲、態(tài)度、經(jīng)濟地位、忠誠度、促銷、廣告效果、品牌形象等,所以,我們必須從多個角度或維度去測量,比如多維度測量購買產(chǎn)品的動機、消費習慣、生活態(tài)度和方式等;
這樣,一組量表,有太多的變量,我們希望能夠消減變量,用一個新的、更小的由原始變量集組合成的新變量集作進一步分析。這就是因子分析的本質(zhì),所以在SPSS軟件中,因子分析方法歸類在消減變量菜單下。新的變量集能夠更好的說明問題,利于簡化和解釋問題。
當然,因子分析也往往是預處理技術,例如,在市場研究中我們要進行市場細分研究,往往采用一組量表測量消費者,首先,通過因子分析得到消減變量后的正交的因子(概念),然后利用因子進行聚類分析,而不再用原來的測量變量了!我想這是市場研究中因子分析的主要應用!
其實,你可以想象,例如在多元回歸分析中,如果多個自變量存在相關性,如果可以用因子分析,得到幾個不相關的變量(因子),再進行回歸,就解決了自變量共線性問題。(理論上是這樣的,但市場研究很少這么操作?。?
下面是要理解的因子分析的基本概念:
?一種簡化數(shù)據(jù)的技術。
?探索性因子分析和證實性因子分析
?因子分析就是要找到具有本質(zhì)意義的少量因子。
?用一定的結(jié)構(gòu)/模型,去表達或解釋大量可觀測的變量。
?用相對少量的幾個因子解釋原來許多相互關聯(lián)的變量之間的關系。
?描述的變量是可觀測的——顯在變量。
?相關性較高,聯(lián)系比較緊密的變量放在一類。
?每一類變量隱含一個因子——潛在變量。
?不同類的變量之間相關性較弱。
?各個因子之間不相關。
案例:我們通過SPSS Statistics軟件來進行操作!
1、缺失值處理及KMO檢驗
在進行因子分析前,大家務必明確你的數(shù)據(jù)集中24個變量是否存在缺失值問題!默認情況下系統(tǒng)采用Lisewase,也即是只要24個變量有一個缺失,該記錄刪除,也就是說如果你的樣本存在大量缺失,可能造成因子分析的樣本量大量收縮!
我們將24個變量選擇后,選擇描述對話框,可以選擇KMO和Bartlett的球形度檢驗!這個指標主要從統(tǒng)計角度給出24個變量是否存在內(nèi)在結(jié)構(gòu),也就是潛在因子結(jié)構(gòu),說白了,就是不適合因子分析!極端可能就是所有24個變量都測量的是一個維度的因子概念,另一個極端就是24個變量全部是正交不相關的,根本不存在因子,不適合因子分析!
2、接下來我們要選擇抽取因子的方法:
在方法上,我們?nèi)绻皇欠浅@斫饣蛴刑厥庖?,就選擇主成份方法;這也是為什么在SPSS軟件中沒有獨立的主成份分析,其實是包容在因子分析中了!記住一點:如果24個變量存在因子結(jié)構(gòu),用什么方法得當?shù)慕Y(jié)果基本相同!況且,市場研究采用量表24個變量的測量尺度都是一致的!如果你沒有特殊要求,默然選擇抽取特征值大于1的因子!選擇碎石圖——也是表達因子選擇的圖示方式!因為是研究結(jié)構(gòu),所以從相關矩陣出發(fā),實際上就是標準化后的方差矩陣,沒有了量綱!
3、接下來,我們選擇因子旋轉(zhuǎn)方法!
因子旋轉(zhuǎn)是因子分析的核心技巧,也是我們期望得到的結(jié)果。旋轉(zhuǎn)的概念就是坐標變換,不過旋轉(zhuǎn)有正交和斜交旋轉(zhuǎn)差別罷了!從解釋因子結(jié)構(gòu)的角度正交旋轉(zhuǎn)是最容易解釋的,得到的因子也是不相關的;斜交則得到的因子具有相關性,但更符合或能捕捉數(shù)據(jù)的維度!所以,有一種說法,如果是接下來要進行市場細分,最好采用斜交更好!當然,我們最常用的,一般采用最大方差旋轉(zhuǎn)!
4、最后,有一個選擇要完成,就是選項對話框!
我們要選擇按大小排序,并且將因子負荷小于0.4的都不顯示,這樣我們看的更清楚!
為什么選擇0.4呢?這主要依賴樣本量和絕對誤差的考慮!
從樣本量角度看因子負荷,大部分市場研究樣本量都在200以上!
記?。喝绻悴荒芫毧紤],就選0.4吧!
5、下面我們就可以執(zhí)行了!我們看看結(jié)果:
從結(jié)果可以看出,Bartlett球檢驗是顯著的,說明存在因子結(jié)構(gòu),另外KMO=0.764,較適宜因子分析!,一般KMO=0.8就是Excellent了!
接下來看因子方差解釋,總的方差解釋是63.448%,總共存在7個公因子,說明如果將來不用24個變量,而改用這7個因子可以說明原來24個變量的63.4%的變差。(如果你確認了這樣的結(jié)果,可以選擇把7個因子得分保存為變量了)
如果我們只是看非旋轉(zhuǎn)的話,就是主成份分析部分了,我們來看旋轉(zhuǎn)后的結(jié)果:
我們可以看到因子排列非常恰當和明顯,這都是因為我們在選項中選擇了排序和壓縮了小于0.4的負荷值!
你可以看到F1_6變量在3和4因子上都有負荷,這就產(chǎn)生了雙負荷!如果存在大量的雙負荷,我們就要考慮是否要斜交旋轉(zhuǎn)了!
最后,我們要完成因子命名!如果不能給出好的因子命名,我們放棄24個變量用7個因子變量都不知道意義,如何分析呢!當然如何命名因子是個藝術活了!我一般的思考方式是:1)先看意義,哪些變量負荷在一個因子上,是否能解釋這些因子;2)如果可以,選擇因子名稱;3)如果不能給出恰當名字,就選擇負荷變量的簡稱綜合在一起,先代表著;4)隨著后續(xù)的分析,因子慢慢確定;
到這里因子分析就完成了!
但因子分析往往是預處理技術,如果要用來細分市場,該如何進一步操作呢?是選因子還是選前兩個負荷最大的變量,這都是留給你來思考的!
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關鍵? 在循環(huán)神經(jīng)網(wǎng)絡(RNN)家族中,長短期記憶網(wǎng)絡(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預測分析中的應用:從數(shù)據(jù)查詢到趨勢預判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應對策略? 長短期記憶網(wǎng)絡(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調(diào)研數(shù)據(jù)中的深度應用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎 ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03