
R語言通過parallel包實(shí)現(xiàn)多線程運(yùn)行
總的來說,R的運(yùn)算速度不算快,不過類似并行運(yùn)算之類的改進(jìn)可以提高運(yùn)算的性能。下面非常簡要地介紹如何利用R語言進(jìn)行并行運(yùn)算
library(parallel)
cl.cores <- detectCores()
cl <- makeCluster(cl.cores)
detectCores( )檢查當(dāng)前電腦可用核數(shù)。
makeCluster(cl.cores)使用剛才檢測的核并行運(yùn)算。R-Doc里這樣描述makeCluster函數(shù):Creates a set of copies of R running in parallel and communicating over sockets. 即同時創(chuàng)建數(shù)個R進(jìn)行并行運(yùn)算。在該函數(shù)執(zhí)行后就已經(jīng)開始并行運(yùn)算了,電腦可能會變卡一點(diǎn)。尤其在執(zhí)行par開頭的函數(shù)時。
在并行運(yùn)算環(huán)境下,常用的一些計算方法如下:
1. clusterEvalQ(cl,expr)函數(shù)利用創(chuàng)建的cl執(zhí)行expr
這里利用剛才創(chuàng)建的cl核并行運(yùn)算expr。expr是執(zhí)行命令的語句,不過如果命令太長的話,一般寫到文件里比較好。比如把想執(zhí)行的命令放在Rcode.r里:
clusterEvalQ(cl,source(file="Rcode.r"))
2.par開頭的apply函數(shù)族。
這族函數(shù)和apply的用法基本一樣,不過要多加一個參數(shù)cl。一般如果cl創(chuàng)建如上面cl <- makeCluster(cl.cores)的話,這個參數(shù)可以直接用作parApply(cl=cl,…)。當(dāng)然Apply也可以是Sapply,Lapply等等。注意par后面的第一個字母是要大寫的,而一般的apply函數(shù)族第一個字母不大寫。另外要注意,即使構(gòu)建了并行運(yùn)算的核,不使用parApply()函數(shù),而使用apply()函數(shù)的話,則仍然沒有實(shí)現(xiàn)并行運(yùn)算。換句話說,makeCluster只是創(chuàng)建了待用的核,而不是并行運(yùn)算的環(huán)境。
最后,終止并行運(yùn)算只需要一行命令
stopCluster(cl)
案例1、不使用并行計算,直接使用lapply(隱式循環(huán)函數(shù),它實(shí)際就是對不同的數(shù)據(jù)應(yīng)用了相同的函數(shù)):
1 fun <- function(x){
2 return (x+1);
3 }
4
5 system.time({
6 res <- lapply(1:5000000, fun);
7 });
8
9 user system elapsed
10 21.42 1.74 25.70
11
案例2、使用parallel包來加速
1 library(parallel)
2 #打開四核,具體核數(shù)根據(jù)機(jī)器的核數(shù)決定
3 cl <- makeCluster(getOption("cl.cores", 4));
4 system.time({
5 res <- parLapply(cl, 1:5000000, fun)
6 });
7 user system elapsed
8 6.54 0.34 19.95
9 #關(guān)閉并行計算
10 stopCluster(cl);
看看單核機(jī)器跑出來的結(jié)果:
user system elapsed
29.30 9.23 97.22
所以,并非核數(shù)越多越好,看機(jī)器配置。
這個函數(shù)有兩點(diǎn)要注意:
首先要先用detectCores函數(shù)確定系統(tǒng)核心數(shù)目,對于Window系統(tǒng)下的Intel I5或I7 處理器,一般使用detectCores(logical = F)來獲得實(shí)際的物理核心數(shù)量。
由于這個函數(shù)使用的是調(diào)用Rscript的方式,這個例子里,對象被復(fù)制了三份,因此內(nèi)存會吃的很厲害,在大數(shù)據(jù)條件就要小心使用。
案例3、在Linux下使用mclapply函數(shù)的效果如下:
1
2 mc <- getOption("mc.cores", 3)
3 system.time({
4 res <- mclapply(1:5000000, fun, mc.cores = mc);
5 });
6 user system elapsed
7 6.657 0.500 7.181
8 stopCluster(cl);
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10