
使用Python進(jìn)行線性回歸
線性回歸是最簡(jiǎn)單同時(shí)也是最常用的一個(gè)統(tǒng)計(jì)模型。線性回歸具有結(jié)果易于理解,計(jì)算量小等優(yōu)點(diǎn)。如果一個(gè)簡(jiǎn)單的線性回歸就能取得非常不錯(cuò)的預(yù)測(cè)效果,那么就沒(méi)有必要采用復(fù)雜精深的模型了。
今天,我們一起來(lái)學(xué)習(xí)使用Python實(shí)現(xiàn)線性回歸的幾種方法:
通過(guò)公式編寫矩陣運(yùn)算程序;
通過(guò)使用機(jī)器學(xué)習(xí)庫(kù)sklearn;
通過(guò)使用statmodels庫(kù)。
這里,先由簡(jiǎn)至繁,先使用sklearn實(shí)現(xiàn),再講解矩陣推導(dǎo)實(shí)現(xiàn)。
1.使用scikit-learn進(jìn)行線性回歸
設(shè)置工作路徑
#
import os
os.getcwd()
os.chdir('D:\my_python_workfile\Project\Writting')
加載擴(kuò)展包
import pandas as pd
import numpy as np
import pylab as pl
import matplotlib.pyplot as plt
載入數(shù)據(jù)并可視化分析
這里,為了簡(jiǎn)單起見,使用sklearn中自帶的數(shù)據(jù)集鳶尾花數(shù)據(jù)iris進(jìn)行分析,探索『花瓣寬』和『花瓣長(zhǎng)』之間的線性關(guān)系。
from sklearn.datasets import load_iris
# load data
iris = load_iris()
# Define a DataFrame
df = pd.DataFrame(iris.data, columns = iris.feature_names)
# take a look
df.head()
#len(df)
# correlation
df.corr()
# rename the column name
df.columns = ['sepal_length','sepal_width','petal_length','petal_width']
df.columns
Index([u'sepal_length', u'sepal_width', u'petal_length', u'petal_width'], dtype='object')
plt.matshow(df.corr())
由上面分析可知,花瓣長(zhǎng)sepal length和花瓣寬septal width有著非常顯著的相關(guān)性。
下面,通過(guò)線性回歸進(jìn)一步進(jìn)行驗(yàn)證。
# save image
fig,ax = plt.subplots(nrows = 1, ncols = 1)
ax.matshow(df.corr())
fig.savefig('./image/iris_corr.png')
建立線性回歸模型
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
lr = LinearRegression()
X = df[['petal_length']]
y = df['petal_width']
lr.fit(X,y)
# print the result
lr.intercept_,lr.coef_
(-0.3665140452167297, array([ 0.41641913]))
# get y-hat
yhat = lr.predict(X = df[['petal_length']])
# MSE
mean_squared_error(df['petal_width'],yhat)
# lm plot
plt.scatter(df['petal_length'],df['petal_width'])
plt.plot(df['petal_length'],yhat)
#save image
plt.savefig('./image/iris_lm_fit.png')
2.使用statmodels庫(kù)
#import statsmodels.api as sm
import statsmodels.formula.api as sm
linear_model = sm.OLS(y,X)
results = linear_model.fit()
results.summary()
OLS Regression Results
3.使用公式推導(dǎo)
線性回歸,即是使得如下目標(biāo)函數(shù)最小化:
使用最小二乘法,不難得到β的估計(jì):
從而,我們可以根據(jù)此公式,編寫求解β^的函數(shù)。
from numpy import *
#########################
# 定義相應(yīng)的函數(shù)進(jìn)行矩陣運(yùn)算求解。
def standRegres(xArr, yArr):
xMat = mat(xArr)
yMat = mat(yArr).T
xTx = xMat.T * xMat
if linalg.det(xTx) == 0.0:
print "this matrix is singular, cannot do inverse!"
return NA
else :
ws = xTx.I * (xMat.T * yMat)
return ws
# test
x0 = np.ones((150,1))
x0 = pd.DataFrame(x0)
X0 = pd.concat([x0,X],axis = 1)
standRegres(X0,y)
matrix([[-0.36651405],
[ 0.41641913]])
結(jié)果一致。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03