
今天主要學(xué)習(xí)了兩個統(tǒng)計學(xué)的基本概念:峰度和偏度,并且用R語言語言來描述。
再鞏固一下幾個概念:
1、正態(tài)分布:也叫高斯分布,用最淺顯的話來說就是一種“中間多,兩邊少”的分布;反映在數(shù)據(jù)上,就是數(shù)值在所有數(shù)據(jù)中間的數(shù)量多,偏離中間的數(shù)據(jù)少;
2、偏度:偏度分布是正態(tài)分布的父集,即正態(tài)分布的偏度為0;右偏分布(正偏分布)的偏度>0,左偏分布(負(fù)偏分布)的偏度<0.如下圖所示:
3、峰度:正態(tài)分布的偏度值為3;厚尾(峰度>3),瘦尾(峰度<3);主要是看概率密度函數(shù)的兩側(cè)(尾部):
九、數(shù)組與矩陣
R提供了簡單的工具處理數(shù)組以及矩陣。
1)數(shù)組
維數(shù)向量是元素都非負(fù)的向量,指示數(shù)組或矩陣的維數(shù)
矩陣的維數(shù)是2維
> dim(my_num)<-c(2,5)
> my_num
[,1] [,2] [,3] [,4] [,5]
[1,] 11 34 14 21 11
[2,] 22 71 68 22 34
數(shù)組的維數(shù)是1維
> dim(my_num)<-c(10)
> my_num
[1] 11 22 34 71 14 68 21 22 11 34
一維數(shù)組
> c(x[1],x[3])
[1] 11 3388
> x
[1] 11 22 3388
二維數(shù)組
使用維數(shù)向量設(shè)置數(shù)組維數(shù):
> dim(h)<-c(2,3)
> h
[,1] [,2] [,3]
[1,] 12 15 982
[2,] 32 67 321
數(shù)組切片操作:
> c(h[1,2],h[2,3])
[1] 15 321
> h[2,]
[1] 32 67 321
如果我們切片僅使用一個下標(biāo)或一個索引向量,則會直接取適合位置的元素,不受數(shù)組維數(shù)影響
> h[c(1,2,3)]
[1] 12 32 15
> h[6]
[1] 321
> h[4]
[1] 67
2)索引矩陣
> array(10:20,dim=c(2,5))->x
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 10 12 14 16 18
[2,] 11 13 15 17 19
> array(c(1:3,5:4,3:5),dim=c(2,3))->i
> i
[,1] [,2] [,3]
[1,] 1 3 4
[2,] 2 5 3
將索引向量指向的元素提取出來,形成一個向量
> x[i]
[1] 10 11 12 14 13 12
對指向的元素賦值
> x[i]<-111
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 111 111 111 16 18
[2,] 111 111 15 17 19
3)array使用
Array函數(shù)的參數(shù)有3個,第一個是需要形成數(shù)組元素的數(shù)據(jù),第二個是dim參數(shù)提示維度
> c(1:20)->h
> mya<-array(h,dim=c(4,5))
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
> mydim<-c(2,10)
> mya<-array(h,dim=c(2,10))
> mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 3 5 7 9 11 13 15 17 19
[2,] 2 4 6 8 10 12 14 16 18 20
> dim(mya)
[1] 2 10
第一個參數(shù)既可以是向量也可以是單個值
> mya<-array(1,dim=c(2,10))
> mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 1 1 1 1
[2,] 1 1 1 1 1 1 1 1 1 1
4)數(shù)組運算
逐元素運算
> mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 3 5 7 9 11 13 15 17 19
[2,] 2 4 6 8 10 12 14 16 18 20
> myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2 2 2 2 2 2 2 2 2 2
[2,] 2 2 2 2 2 2 2 2 2 2
> mya+myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 3 5 7 9 11 13 15 17 19 21
[2,] 4 6 8 10 12 14 16 18 20 22
> mya*myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2 6 10 14 18 22 26 30 34 38
[2,] 4 8 12 16 20 24 28 32 36 40
> 3*mya*myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 6 18 30 42 54 66 78 90 102 114
[2,] 12 24 36 48 60 72 84 96 108 120
> mya*myb+mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 3 9 15 21 27 33 39 45 51 57
[2,] 6 12 18 24 30 36 42 48 54 60
2個數(shù)組的外積
定義以下向量:
列向量 u(b1,b2,b3,b4)
行向量 v(a1,a2,a3)
它們的外積%o%被定義為:
R語言學(xué)習(xí)筆記 四0
> b<-array(c(1:4))
> a<-array(c(5:6))
> b%o%a
[,1] [,2]
[1,] 5 6
[2,] 10 12
[3,] 15 18
[4,] 20 24
> b
[1] 1 2 3 4
> a
[1] 5 6
再舉一個例子
> b<-array(c(1:4))
> a<-array(c(5:8))
> a*b
[1] 5 12 21 32
> b
[1] 1 2 3 4
> a
[1] 5 6 7 8
> a%o%b
[,1] [,2] [,3] [,4]
[1,] 5 10 15 20
[2,] 6 12 18 24
[3,] 7 14 21 28
[4,] 8 16 24 32
生成的數(shù)組向量則由 2個數(shù)數(shù)組向量元素所有可能乘積得到
矩陣轉(zhuǎn)置
5)、使用t完成標(biāo)準(zhǔn)的矩陣轉(zhuǎn)置
> array(h,dim=c(2,5))->mya
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> t(mya)
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
2、使用aperm函數(shù)實現(xiàn)矩陣轉(zhuǎn)置
aperm有2個常用的參數(shù)
第一個參數(shù)是需要轉(zhuǎn)置的矩陣,第二個參數(shù)perm指示新矩陣相對于第一個參數(shù)矩陣的維度的下標(biāo),比如說,將行轉(zhuǎn)換為列,將列轉(zhuǎn)換為行,將行列次序更換,將第一維的元素與第二維的元素互換,perm設(shè)為c(2,1),perm中是維度下標(biāo),不是矩陣下標(biāo)。數(shù)據(jù)分析培訓(xùn)
> array(h,dim=c(2,5))->mya
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> aperm(mya)->myb
> myb
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
> aperm(mya,perm=c(2,1))->myb
> myb
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
如果將perm設(shè)為c(1,2)表示不交換原矩陣的維度,即不做操作
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> aperm(mya,perm=c(1,2))->myb
> myb
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
我們再來看一個3維數(shù)組
> array(mya,c(2,2,5))->mya1
> mya1
, , 1
[,1] [,2]
[1,] 1 3
[2,] 2 4
, , 2
[,1] [,2]
[1,] 5 7
[2,] 6 8
, , 3
[,1] [,2]
[1,] 9 1
[2,] 10 2
, , 4
[,1] [,2]
[1,] 3 5
[2,] 4 6
, , 5
[,1] [,2]
[1,] 7 9
[2,] 8 10
> aperm(mya1,perm=c(2,1,3))->myb1
> myb1
, , 1
[,1] [,2]
[1,] 1 2
[2,] 3 4
, , 2
[,1] [,2]
[1,] 5 6
[2,] 7 8
, , 3
[,1] [,2]
[1,] 9 10
[2,] 1 2
, , 4
[,1] [,2]
[1,] 3 4
[2,] 5 6
, , 5
[,1] [,2]
[1,] 7 8
[2,] 9 10
> aperm(mya1,perm=c(1,3,2))->myb1
> myb1
, , 1
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 3 7
[2,] 2 6 10 4 8
, , 2
[,1] [,2] [,3] [,4] [,5]
[1,] 3 7 1 5 9
[2,] 4 8 2 6 10
矩陣的維數(shù)與行列數(shù)
> ncol(mya)
[1] 5
> nrow(mya)
[1] 2
> dim(mya)
[1] 2 5
6)矩陣乘積
若A為m×n矩陣,B為n×r矩陣,則他們的乘積AB(有時記做A· B)會是一個m×r矩陣,但前提是m與n相同時才有定義。
> a
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> b
[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
> a %*% b
[,1] [,2]
[1,] 95 220
[2,] 110 260
7)內(nèi)積
使用crossprod函數(shù)求內(nèi)積。
A.向量內(nèi)積
設(shè)向量A=[x1,x2,...xn],B=[y1,y2,...yn],則矢量A和B的內(nèi)積表示為:A·B=x1×y1+x2×y2+……+xn×yn。
> a<-c(1:3)
> b<-c(4:6)
> crossprod(a,b)
[,1]
[1,] 32
B.矩陣內(nèi)積
矩陣內(nèi)積的計算方式相當(dāng)于第一個參數(shù)的轉(zhuǎn)置乘以第二個參數(shù),這個乘法是矩陣乘法。
> b<-array(c(4:6),dim=c(1,3))
> a<-array(c(1:3),dim=c(1,3))
> a
[,1] [,2] [,3]
[1,] 1 2 3
> b
[,1] [,2] [,3]
[1,] 4 5 6
> crossprod(a,b)
[,1] [,2] [,3]
[1,] 4 5 6
[2,] 8 10 12
[3,] 12 15 18
> t(a) %*% b
[,1] [,2] [,3]
[1,] 4 5 6
[2,] 8 10 12
[3,] 12 15 18
C.對角矩陣
通過向量生成矩陣
> a
[1] 1 2 3 4 5 6 7 8
> diag(a)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 0 0 0 0 0 0 0
[2,] 0 2 0 0 0 0 0 0
[3,] 0 0 3 0 0 0 0 0
[4,] 0 0 0 4 0 0 0 0
[5,] 0 0 0 0 5 0 0 0
[6,] 0 0 0 0 0 6 0 0
[7,] 0 0 0 0 0 0 7 0
[8,] 0 0 0 0 0 0 0 8
取矩陣的對角線元素組成向量
> a<-array(c(1:16),dim=c(4,4))
> diag(a)
[1] 1 6 11 16
> a
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10