
作者:俊欣
來(lái)源:關(guān)于數(shù)據(jù)分析與可視化
今天和大家來(lái)分享一些數(shù)據(jù)可視化方向的干貨,我們來(lái)嘗試用Python來(lái)繪制一下“漏斗圖”,但愿大家在看完本篇文章之后會(huì)有所收獲。
漏斗圖常用于用戶行為的轉(zhuǎn)化率分析,例如通過(guò)漏斗圖來(lái)分析用戶購(gòu)買流程中各個(gè)環(huán)節(jié)的轉(zhuǎn)化率。當(dāng)然在整個(gè)分析過(guò)程當(dāng)中,我們會(huì)把流程優(yōu)化前后的漏斗圖放在一起,進(jìn)行比較分析,得出相關(guān)的結(jié)論,今天小編就用“matplotlib”、“plotly”以及“pyecharts”這幾個(gè)模塊來(lái)為大家演示一下怎么畫出好看的漏斗圖
首先我們先要導(dǎo)入需要用到的模塊以及數(shù)據(jù),
import matplotlib.pyplot as plt import pandas as pd
df = pd.DataFrame({"環(huán)節(jié)": ["環(huán)節(jié)一", "環(huán)節(jié)二", "環(huán)節(jié)三", "環(huán)節(jié)四", "環(huán)節(jié)五"], "人數(shù)": [1000, 600, 400, 250, 100], "總體轉(zhuǎn)化率": [1.00, 0.60, 0.40, 0.25, 0.1]})
需要用到的數(shù)據(jù)如下圖所示
用matplotlib來(lái)制作漏斗圖,制作出來(lái)的效果可能會(huì)稍顯簡(jiǎn)單與粗糙,制作的原理也比較簡(jiǎn)單,先繪制出水平方向的直方圖,然后利用plot.barh()當(dāng)中的“l(fā)eft”參數(shù)將直方圖向左移,便能出來(lái)類似于漏斗圖的模樣
y = [5,4,3,2,1] x = [85,75,58,43,23] x_max = 100 x_min = 0 for idx, val in enumerate(x): plt.barh(y[idx], x[idx], left = idx+5) plt.xlim(x_min, x_max)
而要繪制出我們想要的想要的漏斗圖的模樣,代碼示例如下
from matplotlib import font_manager as fm # funnel chart y = [5,4,3,2,1]
labels = df["環(huán)節(jié)"].tolist()
x = df["人數(shù)"].tolist()
x_range = 100
font = fm.FontProperties(fname="KAITI.ttf")
fig, ax = plt.subplots(1, figsize=(12,6)) for idx, val in enumerate(x):
left = (x_range - val)/2 plt.barh(y[idx], x[idx], left = left, color='#808B96', height=.8, edgecolor='black') # label plt.text(50, y[idx]+0.1, labels[idx], ha='center',
fontproperties=font, fontsize=16, color='#2A2A2A') # value plt.text(50, y[idx]-0.3, x[idx], ha='center',
fontproperties=font, fontsize=16, color='#2A2A2A') if idx != len(x)-1:
next_left = (x_range - x[idx+1])/2 shadow_x = [left, next_left, 100-next_left, 100-left, left]
shadow_y = [y[idx]-0.4, y[idx+1]+0.4,
y[idx+1]+0.4, y[idx]-0.4, y[idx]-0.4]
plt.plot(shadow_x, shadow_y)
plt.xlim(x_min, x_max)
plt.axis('off')
plt.title('每個(gè)環(huán)節(jié)的流失率', fontproperties=font, loc='center', fontsize=24, color='#2A2A2A')
plt.show()
繪制出來(lái)的漏斗圖如下圖所示
當(dāng)然我們用plotly來(lái)繪制的話則會(huì)更加的簡(jiǎn)單一些,代碼示例如下
import plotly.express as px data = dict(values=[80,73,58,42,23],
labels=['環(huán)節(jié)一', '環(huán)節(jié)二', '環(huán)節(jié)三', '環(huán)節(jié)四', '環(huán)節(jié)五'])
fig = px.funnel(data, y='labels', x='values')
fig.show()
最后我們用pyecharts模塊來(lái)繪制一下,當(dāng)中有專門用來(lái)繪制“漏斗圖”的方法,我們只需要調(diào)用即可
from pyecharts.charts import Funnel
from pyecharts import options as opts
from pyecharts.globals import ThemeType c = ( Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC ))
.add( "環(huán)節(jié)",
df[["環(huán)節(jié)","總體轉(zhuǎn)化率"]].values,
sort_="descending",
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗圖", pos_bottom = "90%", pos_left = "center"))
) c.render_notebook()
我們將數(shù)據(jù)標(biāo)注上去之后
c = (
Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC ))
.add( "商品",
df[["環(huán)節(jié)","總體轉(zhuǎn)化率"]].values,
sort_="descending",
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗圖", pos_bottom = "90%", pos_left = "center"))
.set_series_opts(label_opts=opts.LabelOpts(formatter=":{c}"))
)
c.render_notebook()
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書(shū)考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開(kāi)啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03