
R語言中的線性判別分析_r語言 線性判別分析
在R語言中,線性判別分析(Liner Discriminant Analysis,簡稱LDA),依靠軟件包MASS中有線性判別函數(shù)lqa()來實現(xiàn)。該函數(shù)有三種調(diào)用格式:
1)當(dāng)對象為數(shù)據(jù)框data.frame時
lda(x,grouping,prior = propotions,tol = 1.0e-4,method,CV = FALSE,nu,…)
2) 當(dāng)對象為公式Formula時
lda(formula,data,…,subnet,na.action)
3) 當(dāng)對象為矩陣Matrix時
lda(x,group,…,subnet,na.action)
對于第一種情況,grouping表示每個觀測樣本的所屬類別;
prior表示各類別的先驗概率,默認取訓(xùn)練集中各樣本的比例;
tol表示篩選變量,默認取0.0001
對于第二種情況,formula表示判別公式,比如,y~x1+x2+x3,或者y~x1*x1
data表示數(shù)據(jù)集
subnet表示樣本
na.action表示處理缺失值的方法,默認為“如果樣本中有缺失值,則lda()函數(shù)無法運行”;如果設(shè)置為na.omit,則表示“自動刪除樣本中的缺失值,然后,進行計算”
對于第三種情況,x表示矩陣
data表示數(shù)據(jù)集
subnet表示樣本
na.action表示處理缺失值的方法,默認為“如果樣本中有缺失值,則lda()函數(shù)無法運行”;如果設(shè)置為na.omit,則表示“自動刪除樣本中的缺失值,然后,進行計算”
下面,舉一個例子,來說明線性判別分析。我們選用kknn軟件包中的miete數(shù)據(jù)集進行算法演示。miete數(shù)據(jù)集記錄了1994年慕尼黑的住房傭金標(biāo)準(zhǔn)中一些有趣變量,比如房子的面積、是否有浴室、是否有中央供暖、是否供應(yīng)熱水等等,這些因素都影響著傭金的高低。
1.數(shù)據(jù)概況
首先,簡單了解一下,miete數(shù)據(jù)集。
> library(kknn) > data(miete) > head(miete)
nm wfl bj bad0 zh ww0 badkach fenster kueche mvdauer bjkat wflkat
1 693.29 50 1971.5 0 1 0 0 0 0 2 4 1
2 736.60 70 1971.5 0 1 0 0 0 0 26 4 2
3 732.23 50 1971.5 0 1 0 0 0 0 1 4 1
4 1295.14 55 1893.0 0 1 0 0 0 0 0 1 2
5 394.97 46 1957.0 0 0 1 0 0 0 27 3 1
6 1285.64 94 1971.5 0 1 0 1 0 0 2 4 3
nmqm rooms nmkat adr wohn
1 13.865800 1 3 2 2
2 10.522857 3 3 2 2
3 14.644600 1 3 2 2
4 23.548000 3 5 2 2
5 8.586304 3 1 2 2
6 13.677021 4 5 2 2
> dim(miete)
[1] 1082 17
我們看到,該數(shù)據(jù)集一共有1082條樣本,和17個變量。下面,我們利用summary()來查看變量的信息。
> summary(miete)
nm wfl bj bad0 zh ww0
Min. : 127.1 Min. : 20.00 Min. :1800 0:1051 0:202 0:1022
1st Qu.: 543.6 1st Qu.: 50.25 1st Qu.:1934 1: 31 1:880 1: 60
Median : 746.0 Median : 67.00 Median :1957
Mean : 830.3 Mean : 69.13 Mean :1947
3rd Qu.:1030.0 3rd Qu.: 84.00 3rd Qu.:1972
Max. :3130.0 Max. :250.00 Max. :1992
badkach fenster kueche mvdauer bjkat wflkat nmqm
0:446 0:1024 0:980 Min. : 0.00 1:218 1:271 Min. : 1.573
1:636 1: 58 1:102 1st Qu.: 2.00 2:154 2:513 1st Qu.: 8.864
Median : 6.00 3:341 3:298 Median :12.041
Mean :10.63 4:226 Mean :12.647
3rd Qu.:17.00 5: 79 3rd Qu.:16.135
Max. :82.00 6: 64 Max. :35.245
rooms nmkat adr wohn
Min. :1.000 1:219 1: 25 1: 90
1st Qu.:2.000 2:230 2:1035 2:673
Median :3.000 3:210 3: 22 3:319
Mean :2.635 4:208
3rd Qu.:3.000 5:215
Max. :9.000
我們可以選擇nmkat(凈租金)作為 待判別變量—一是,由于該變量在含義上容易受其他變量影響,為被解釋變量;二是,nmkat自身就有5個等級類別,其相應(yīng)的樣本量依次為 219、230、210、208、215,即每一類的樣本量都為200個左右,分布比較均勻。
2.數(shù)據(jù)預(yù)處理
下面,我們將miete數(shù)據(jù)集,分為訓(xùn)練集和測試集。
為了提高判別效果,我們考慮采用分層抽樣的方式,由于miete數(shù)據(jù)集中,待判別變量nmkat的5個等級分布比較均勻,因此采用5個等級按等量抽取樣本。(如果分布不均勻,則采用按比例抽取樣本)。具體如下:
> library(sampling) > n = round(2/3*nrow(miete)/5) > n
[1] 144
可以看到,訓(xùn)練集占總樣本的2/3,測試集占總樣本的1/3,從訓(xùn)練集中nmkat變量的每一個等級抽取的樣本數(shù)是144個。
> #以nmkat變量的5個等級劃分層次,進行分層抽樣 > sub_train = strata(miete,stratanames = "nmkat",size=rep(n,5),method="srswor") > head(sub_train)
#顯示訓(xùn)練集抽取的情況,包括nmkat變量取值、該樣本在數(shù)據(jù)集中的序號、被抽取的概率、以及被抽取的層次。
nmkat ID_unit Prob Stratum
1 3 1 0.6857143 1
2 3 2 0.6857143 1
3 3 3 0.6857143 1
16 3 16 0.6857143 1
20 3 20 0.6857143 1
22 3 22 0.6857143 1
>
> #獲取如上ID_unit所對應(yīng)的樣本構(gòu)成訓(xùn)練集,并刪除變量1、3、12 > data_train = getdata(miete[,c(-1,-3,-12)],sub_train$ID_unit) > data_test = getdata(miete[,c(-1,-3,-12)],-sub_train$ID_unit) > dim(data_train); dim(data_test) #分別顯示訓(xùn)練集、測試集的維度
[1] 720 14
[1] 362 14
> head(data_test)
wfl bad0 zh ww0 badkach fenster kueche mvdauer bjkat nmqm rooms nmkat
7 28 0 1 0 0 1 1 9 4 17.011071 1 1
8 36 0 1 0 0 0 1 3 4 19.710278 1 3
9 33 0 1 0 0 0 0 1 4 25.840606 1 4
10 57 0 1 0 1 0 1 9 6 11.534035 2 2
11 75 0 1 0 1 0 1 3 6 16.504533 3 5
17 79 0 1 0 0 0 0 20 4 7.507215 3 2
adr wohn
7 2 2
8 2 2
9 2 2
10 2 2
11 2 2
17 2 2
至此,數(shù)據(jù)理解和數(shù)據(jù)預(yù)處理過程結(jié)束,得到可以直接使用的訓(xùn)練集data_train和測試集data_test。
3.線性判別
這里使用公式formula格式,進行判別。首先要加載軟件包MASS,接著使用nmkat作為待判別變量,其他變量作為特征變量,根據(jù)公式nmkat~. (如果變量為y,則公式為y~. ) ,使用訓(xùn)練集data_train來運行 lda()函數(shù)。
> library(MASS) > fit_lda1 = lda(nmkat~., data_train) #以公式格式進行線性判別 > names(fit_lda1) > fit_lda1$prior
1 2 3 4 5
0.2 0.2 0.2 0.2 0.2
我們可以看到,各類別的先驗概率在5個等級中都為0.2,之和為1,即它們都相等,這與它們分別均勻?qū)?yīng)。
> fit_lda1$means
wfl bad01 zh1 ww01 badkach1 fenster1 kueche1
1 54.87500 0.055555556 0.6041667 0.138888889 0.3888889 0.06944444 0.04166667
2 60.59722 0.013888889 0.8125000 0.027777778 0.5486111 0.08333333 0.04166667
3 66.76389 0.013888889 0.8194444 0.041666667 0.5208333 0.06944444 0.07638889
4 74.70833 0.013888889 0.8750000 0.041666667 0.6458333 0.03472222 0.07638889
5 90.10417 0.006944444 0.9375000 0.006944444 0.7708333 0.04166667 0.20833333
mvdauer bjkat.L bjkat.Q bjkat.C bjkat^4 bjkat^5
1 14.444444 -0.21580517 -0.104562739 0.031056500 0.17323372 -0.17585847
2 11.923611 -0.12450298 -0.211398581 -0.002588042 0.20604313 -0.12642562
3 11.847222 -0.12782306 -0.145478593 0.049690399 0.16273470 -0.07349309
4 10.347222 -0.08964215 -0.127293769 -0.035197366 0.12861291 0.01137393
5 5.333333 -0.04482107 -0.009092412 0.018633900 0.02624753 -0.01574852
nmqm rooms adr.L adr.Q wohn.L wohn.Q
1 8.231574 2.173611 -0.019641855 -0.7654655 0.03437325 -0.3997431
2 10.988627 2.416667 -0.034373246 -0.7569604 0.08838835 -0.4252586
3 12.495436 2.597222 -0.019641855 -0.7654655 0.11294067 -0.3487121
4 14.107342 2.861111 0.004910464 -0.7909811 0.16695577 -0.3912379
5 17.108865 3.250000 0.019641855 -0.7484552 0.27498597 -0.2041241
從上面的結(jié)果中,可以看到一些很能反映現(xiàn)實情況的數(shù)據(jù)特征。比如,住房面積wfl變量,它明顯隨著租金nmkat的升高而逐步提高。這與我們的常識“房子的面積越大,租金就越貴”是十分吻合的。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11