
分類-回歸樹模型(CART)在R語言中的實現
CART模型 ,即Classification And Regression Trees。它和一般回歸分析類似,是用來對變量進行解釋和預測的工具,也是數據挖掘中的一種常用算法。如果因變量是連續(xù)數據,相對應的分析稱為回歸樹,如果因變量是分類數據,則相應的分析稱為分類樹。
決策樹是一種倒立的樹結構,它由內部節(jié)點、葉子節(jié)點和邊組成。其中最上面的一個節(jié)點叫根節(jié)點。 構造一棵決策樹需要一個訓練集,一些例子組成,每個例子用一些屬性(或特征)和一個類別標記來描述。構造決策樹的目的是找出屬性和類別間的關系,一旦這種關系找出,就能用它來預測將來未知類別的記錄的類別。這種具有預測功能的系統(tǒng)叫決策樹分類器。其算法的優(yōu)點在于:
1)可以生成可以理解的規(guī)則。
2)計算量相對來說不是很大。
3)可以處理多種數據類型。
4)決策樹可以清晰的顯示哪些變量較重要。
下面以一個例子來講解如何在R語言中建立樹模型。為了預測身體的肥胖程度,可以從身體的其它指標得到線索,例如:腰圍、臀圍、肘寬、膝寬、年齡。
#首先載入所需軟件包
library(mboost)
library(rpart)
library(maptree)
#讀入樣本數據
data('bodyfat')
#建立公式
formular=DEXfat~age+waistcirc+hipcirc+elbowbreadth+kneebreadth
#用rpart命令構建樹模型,結果存在fit變量中
fit=rpart(formula,method='avova',data=bodyfat)
#直接調用fit可以看到結果
n= 71
node), split, n, deviance, yval
* denotes terminal node
1) root 71 8535.98400 30.78282
2) waistcirc< 88.4 40 1315.35800 22.92375
4) hipcirc< 96.25 17 285.91370 18.20765 *
5) hipcirc>=96.25 23 371.86530 26.40957
10) waistcirc< 80.75 13 117.60710 24.13077 *
11) waistcirc>=80.75 10 98.99016 29.37200 *
3) waistcirc>=88.4 31 1562.16200 40.92355
6) hipcirc< 109.9 13 136.29600 35.27846 *
7) hipcirc>=109.9 18 712.39870 45.00056 *
#也可以用畫圖方式將結果表達得更清楚一些
draw.tree(fit)
#建立樹模型要權衡兩方面問題,一個是要擬合得使分組后的變異較小,另一個是要防止過度擬合,而使模型的誤差過大,前者的參數是CP,后者的參數是Xerror。所以要在Xerror最小的情況下,也使CP盡量小。如果認為樹模型過于復雜,我們需要對其進行修剪
#首先觀察模型的誤差等數據
printcp(fit)
Regression tree:
rpart(formula = formula, data = bodyfat)
Variables actually used in tree construction:
[1] hipcirc waistcirc
Root node error: 8536/71 = 120.23
n= 71
CP nsplit rel error xerror xstd
1 0.662895 0 1.00000 1.01364 0.164726
2 0.083583 1 0.33710 0.41348 0.094585
3 0.077036 2 0.25352 0.42767 0.084572
4 0.018190 3 0.17649 0.31964 0.062635
5 0.010000 4 0.15830 0.28924 0.062949
#調用CP(complexity parameter)與xerror的相關圖,一種方法是尋找最小xerror點所對應的CP值,并由此CP值決定樹的大小,另一種方法是利用1SE方法,尋找xerror+SE的最小點對應的CP值。
plotcp(fit)
#用prune命令對樹模型進行修剪(本例的樹模型不復雜,并不需要修剪)
pfit=prune(fit,cp= fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"])
#模型初步解釋:腰圍和臀圍較大的人,肥胖程度較高,而其中腰圍是最主要的因素。
#利用模型預測某個人的肥胖程度
ndata=data.frame(waistcirc=99,hipcirc=110,elbowbreadth=6,kneebreadth=8,age=60)
predict(fit,newdata=ndata)
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓練與驗證損失驟升:機器學習訓練中的異常診斷與解決方案 在機器學習模型訓練過程中,“損失曲線” 是反映模型學習狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數據生態(tài)中兩類核心工具的差異與協同 在數字化轉型加速的今天,企業(yè)對數據的需求已從 “存儲” 轉向 “ ...
2025-09-19CDA 數據分析師:讓統(tǒng)計基本概念成為業(yè)務決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數據分析的 “基礎語言”—— 從描述數據分布的 “均 ...
2025-09-19CDA 數據分析師:表結構數據 “獲取 - 加工 - 使用” 全流程的賦能者 表結構數據(如數據庫表、Excel 表、CSV 文件)是企業(yè)數字 ...
2025-09-19SQL Server 中 CONVERT 函數的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數據處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數據庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數據分析師:解鎖表結構數據特征價值的專業(yè)核心 表結構數據(以 “行 - 列” 規(guī)范存儲的結構化數據,如數據庫表、Excel 表、 ...
2025-09-17Excel 導入數據含缺失值?詳解 dropna 函數的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數據時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數據分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數據差異是否 “ ...
2025-09-16CDA 數據分析師:掌控表格結構數據全功能周期的專業(yè)操盤手 表格結構數據(以 “行 - 列” 存儲的結構化數據,如 Excel 表、數據 ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數據分析師:激活表格結構數據價值的核心操盤手 表格結構數據(如 Excel 表格、數據庫表)是企業(yè)最基礎、最核心的數據形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數據爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數據的科學計數法問題 為幫助 Python 數據從業(yè)者解決pd.read_csv讀取長浮點數據時的科學計數法問題 ...
2025-09-12CDA 數據分析師:業(yè)務數據分析步驟的落地者與價值優(yōu)化者 業(yè)務數據分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數據把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數據驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11