2019-03-08
閱讀量:
911
皮爾森相關(guān)分析
from numpy.random import rand
from numpy.random import seed
from scipy.stats import spearmanr
# seed random number generator
seed(1)
# prepare data
data1 = data['x']
data2 = data['price']
# calculate spearman's correlation
coef, p = spearmanr(data1, data2)
print('Spearmans correlation coefficient: %.3f' % coef)
# interpret the significance
alpha = 0.05
if p > alpha:
print('Samples are uncorrelated (fail to reject H0) p=%.3f' % p)
else:
print('Samples are correlated (reject H0) p=%.3f' % p)
Spearmans correlation coefficient: 0.963
Samples are correlated (reject H0) p=0.000






評(píng)論(0)


暫無數(shù)據(jù)
CDA考試動(dòng)態(tài)
CDA報(bào)考指南
推薦帖子
0條評(píng)論
0條評(píng)論
0條評(píng)論
0條評(píng)論