20 row()與col()函數(shù)
在R中定義了的這兩個函數(shù)用于取矩陣元素的行或列下標矩陣,例如矩陣A={aij}m×n,
row()函數(shù)將返回一個與矩陣A有相同維數(shù)的矩陣,該矩陣的第i行第j列元素為i,函數(shù)col()
類似。例如:
> x=matrix(1:12,3,4)
> row(x)
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 2 2
[3,] 3 3 3 3
> col(x)
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 1 2 3 4
[3,] 1 2 3 4
這兩個函數(shù)同樣可以用于取一個矩陣的上下三角矩陣,例如:
> x
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> x[row(x)<col(x)]=0
> x
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 2 5 0 0
[3,] 3 6 9 0
> x=matrix(1:12,3,4)
> x[row(x)>col(x)]=0
> x
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 0 5 8 11
[3,] 0 0 9 12
21 行列式的值
在R中,函數(shù)det(x)將計算方陣x的行列式的值,例如:
> x=matrix(rnorm(16),4,4)
> x
[,1] [,2] [,3] [,4]
[1,] -1.0736375 0.2809563 -1.5796854 0.51810378
[2,] -1.6229898 -0.4175977 1.2038194 -0.06394986
[3,] -0.3989073 -0.8368334 -0.6374909 -0.23657088
[4,] 1.9413061 0.8338065 -1.5877162 -1.30568465
> det(x)
[1] 5.717667
22 向量化算子
記矩陣 A ={aij}m n ′ , vec(A) = ( ) a11,?, am1, a12,?am2,? ? , a a 1,n, , mn ¢
記矩陣B ={bij}n n ′ , vech(B) = ( ) b11,?,bn1,b22 2 ,? ? a a n , , nn ¢
在R中可以很容易的實現(xiàn)向量化算子,例如:
vec<-function (x)
{
t(t(as.vector(x)))
}
vech<-function (x)
{
t(x[lower.tri(x,diag=T)])
}
> x=matrix(1:12,3,4)
> x
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> vec(x)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6
[7,] 7
[8,] 8
[9,] 9
[10,] 10
[11,] 11
[12,] 12
> vech(x)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 5 6 9
23 時間序列的滯后值
在時間序列分析中,我們常常要用到一個序列的滯后序列,R中的包“fMultivar”中
的函數(shù)tslag()提供了這個功能。
> args(tslag)
function (x, k = 1, trim = FALSE)
其中:x為一個向量,k指定滯后階數(shù),可以是一個自然數(shù)列,若trim為假,則返回序
列與原序列長度相同,但含有NA值;若trim項為真,則返回序列中不含有NA值,例如:
> x=1:20
> tslag(x,1:4,trim=F)
[,1] [,2] [,3] [,4]
[1,] NA NA NA NA
[2,] 1 NA NA NA
[3,] 2 1 NA NA
[4,] 3 2 1 NA
[5,] 4 3 2 1
[6,] 5 4 3 2
[7,] 6 5 4 3
[8,] 7 6 5 4
[9,] 8 7 6 5
[10,] 9 8 7 6
[11,] 10 9 8 7
[12,] 11 10 9 8
[13,] 12 11 10 9
[14,] 13 12 11 10
[15,] 14 13 12 11
[16,] 15 14 13 12
[17,] 16 15 14 13
[18,] 17 16 15 14
[19,] 18 17 16 15
[20,] 19 18 17 16
> tslag(x,1:4,trim=T)
[,1] [,2] [,3] [,4]
[1,] 4 3 2 1
[2,] 5 4 3 2
[3,] 6 5 4 3
[4,] 7 6 5 4
[5,] 8 7 6 5
[6,] 9 8 7 6
[7,] 10 9 8 7
[8,] 11 10 9 8
[9,] 12 11 10 9
[10,] 13 12 11 10
[11,] 14 13 12 11
[12,] 15 14 13 12
[13,] 16 15 14 13
[14,] 17 16 15 14
[15,] 18 17 16 15
[16,] 19 18 17 16








暫無數(shù)據(jù)