
PyTorch是什么?單從字面上,我們就能很容易看出來,與Python和Torch有關。PyTorch是使用Python作為編程語言,可以說是Torch的Python版,是由Torch7團隊開發(fā)的,一種開源的神經(jīng)網(wǎng)絡框架,專門用于 GPU 加速的深度神經(jīng)網(wǎng)絡(DNN)編程。
可以將PyTorch 看做加入了GPU 支持的numpy,同時PyTorch也是一個擁有自動求導功能的強大的深度神經(jīng)網(wǎng)絡,已經(jīng)被Facebook、Twitter、CMU 和Salesforce 等機構采用。
一、PyTorch優(yōu)點
1.簡潔:
PyTorch在設計時,追求的是最少的封裝,因此PyTorch 的設計遵循tensor→variable(autograd)→nn.Module 三個由低到高的抽象層次,分別代表著高維數(shù)組(張量)、自動求導(變量)和神經(jīng)網(wǎng)絡(層/模塊),而且這三個抽象之間聯(lián)系緊密,可以同時進行修改和操作。 簡潔的設計使得PyTorch的代碼非常容易理解。PyTorch的源碼只有TensorFlow的十分之一左右,設計直觀、不抽象,使得PyTorch的源碼十分易于閱讀和理解。
2.速度:
PyTorch 的靈活性很高,速度也很快,在眾多評測中,PyTorch 的速度表現(xiàn)勝過 TensorFlow和Keras 等許多神經(jīng)網(wǎng)絡框架。PyTorch,通過一種反向自動求導的技術,可以零延遲地任意改變神經(jīng)網(wǎng)絡的行為,盡管這項技術不是PyTorch 獨有,但目前為止它實現(xiàn)是最快的,這也是PyTorch 對比Tensorflow 最大的優(yōu)勢。
3.易用:
PyTorch的面向?qū)ο蟮慕涌谠O計來源于Torch,而Torch的接口設計以靈活易用而著稱,PyTorch繼承了Torch的衣缽,尤其是API的設計和模塊的接口都與Torch高度一致。PyTorch的設計最符合人們的思維,它讓用戶盡可能地專注于實現(xiàn)自己的想法,即所思即所得,不需要考慮太多關于框架本身的束縛。
4.活躍的社區(qū):
PyTorch 提供了完整的文檔,循序漸進的指南,作者親自維護的論壇 供用戶交流和求教問題。Facebook 人工智能研究院對 PyTorch 提供了強力支持,作為當今排名前三的深度學習研究機構,F(xiàn)AIR的支持足以確保PyTorch獲得持續(xù)的開發(fā)更新,不至于像許多由個人開發(fā)的框架那樣曇花一現(xiàn)。
二 、PyTorch安裝
如果已經(jīng)安裝了cuda8.則使用pip來安裝pytorch會十分簡單。若使用其他版本的cuda,則需要下載官方釋放出來對應的安裝包。具體安裝地址參見官網(wǎng)的首頁。
目前最新穩(wěn)定版本為0.4.0.上個版本0.3.0的文檔有中文版,見中文文檔。
pip install torch torchvision # for python2.7
pip3 install torch torchvision # for python3
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結構數(shù)據(jù)特征價值的專業(yè)核心 表結構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結構數(shù)據(jù)(以 “行 - 列” 存儲的結構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結構數(shù)據(jù)價值的核心操盤手 表格結構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10