
Kmeans算法屬于無監(jiān)督學習的一種聚類算法,這種算法的目的為:在數(shù)據(jù)所屬類別及類別數(shù)量不明確的前提下,依據(jù)數(shù)據(jù)自身的特點對數(shù)據(jù)進行聚類。聚類過程中,對于類別數(shù)量k的選取,需要一定的先驗知識,也可根據(jù)“類內(nèi)間距小,類間間距大“(一種聚類算法的理想情況)為目標進行實現(xiàn)。
一、Kmeans均值聚類算法優(yōu)缺點
優(yōu)點:容易實現(xiàn)。
缺點:收斂到局部最小值,在大規(guī)模數(shù)據(jù)集上收斂較慢
適用數(shù)據(jù)類型:數(shù)據(jù)型數(shù)據(jù)
二、Kmeans均值聚類算法
Kmeans均值聚類算法主要思想是:在給定K值和K個初始類簇中心點的情況下,把每個點(亦即數(shù)據(jù)記錄)分到離其最近的類簇中心點所代表的類簇中,所有點分配完畢之后,根據(jù)一個類簇內(nèi)的所有點重新計算該類簇的中心點(取平均值),然后再迭代的進行分配點和更新類簇中心點的步驟,直至類簇中心點的變化很小,或者達到指定的迭代次數(shù)。
具體算法描述如下:
(1)適當選擇k個類的初始中心,最初一般為隨機選取;
(2)在每次迭代中,對任意一個樣本,分別求其到k個中心的歐式距離,將該樣本歸到距離最短的中心所在的類;
(3)利用均值方法更新該k個類的中心的值;
(4)對于所有的k個聚類中心,重復(2)(3),類的中心值的移動距離滿足一定條件時,則迭代結束,完成分類。
Kmeans聚類算法原理簡單,效果也依賴于k值和類中初始點的選擇。
三、Kmeans均值聚類的一般流程
1.收集數(shù)據(jù):使用任意方法
2.準備數(shù)據(jù):需要數(shù)據(jù)型數(shù)據(jù)來計算距離,也可以將標稱型數(shù)據(jù)映射為二值型數(shù)據(jù)再用于距離計算。
3.分析數(shù)據(jù):使用任意方法。
4.訓練算法:不適用于無監(jiān)督學習,即無監(jiān)督學習沒有訓練過程。
5.測試算法:應用聚類算法,觀察結果??梢允褂昧炕恼`差指標如誤差平方和來評價算法的結果。
6.使用算法:可以用于所希望的任何應用,通常情況下,簇質(zhì)心可以代表整個簇的數(shù)據(jù)來做出決策
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結構數(shù)據(jù)特征價值的專業(yè)核心 表結構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結構數(shù)據(jù)(以 “行 - 列” 存儲的結構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結構數(shù)據(jù)價值的核心操盤手 表格結構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10