
支持向量機(jī)SVM(Support Vector Machine),是常見的一種判別方法。在機(jī)器學(xué)習(xí)領(lǐng)域,是有監(jiān)督學(xué)習(xí)模型,通常用來進(jìn)行模式識別、分類及回歸分析,主要針對小樣本數(shù)據(jù)進(jìn)行學(xué)習(xí)、分類和預(yù)測,類似的根據(jù)樣本進(jìn)行學(xué)習(xí)的方法還有決策樹歸納算法等。
對線性可分情況進(jìn)行判別分析;對線性不可分的情況,通過使用非線性映射算法將低維輸入空間線性不可分的樣本,轉(zhuǎn)化為高維特征空間使其線性可分,從而使得高維特征空間采用線性算法對樣本的非線性特征進(jìn)行線性分析成為可能。
基于結(jié)構(gòu)風(fēng)險最小化理論,在特征空間中構(gòu)建最優(yōu)超平面,使得學(xué)習(xí)器得到全局最優(yōu)化,且在整個樣本空間的期望,以某個概率滿足一定上界。
⑴SVM學(xué)習(xí)問題可以表示為凸優(yōu)化問題,因此可以利用已知的有效算法發(fā)現(xiàn)目標(biāo)函數(shù)的全局最小值。而其他分類方法(如基于規(guī)則的分類器和人工神經(jīng)網(wǎng)絡(luò))都采用一種基于貪心學(xué)習(xí)的策略來搜索假設(shè)空間,這種方法一般只能獲得局部最優(yōu)解。
⑵SVM通過最大化決策邊界的邊緣來控制模型的能力。盡管如此,用戶必須提供其他參數(shù),如使用核函數(shù)類型和引入松弛變量等。
⑶通過對數(shù)據(jù)中每個分類屬性引入一個啞變量,SVM可以應(yīng)用于分類數(shù)據(jù)。
⑷SVM一般只能用在二類問題,對于多類問題效果不好。
1、不需要很多樣本,不需要有很多樣本并不意味著訓(xùn)練樣本的絕對量很少,而是說相對于其他訓(xùn)練分類算法比起來,同樣的問題復(fù)雜度下,SVM需求的樣本相對是較少的。并且由于SVM引入了核函數(shù),所以對于高維的樣本,SVM也能輕松應(yīng)對。
2、結(jié)構(gòu)風(fēng)險最小。這種風(fēng)險是指分類器對問題真實(shí)模型的逼近與問題真實(shí)解之間的累積誤差。
3、非線性,是指SVM擅長應(yīng)付樣本數(shù)據(jù)線性不可分的情況,主要通過松弛變量(也叫懲罰變量)和核函數(shù)技術(shù)來實(shí)現(xiàn),這一部分也正是SVM的精髓所在。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實(shí)踐的落地者與價值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價值,最終要在 “實(shí)踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10機(jī)器學(xué)習(xí)解決實(shí)際問題的核心關(guān)鍵:從業(yè)務(wù)到落地的全流程解析 在人工智能技術(shù)落地的浪潮中,機(jī)器學(xué)習(xí)作為核心工具,已廣泛應(yīng)用于 ...
2025-09-09SPSS 編碼狀態(tài)區(qū)域中 Unicode 的功能與價值解析 在 SPSS(Statistical Product and Service Solutions,統(tǒng)計產(chǎn)品與服務(wù)解決方案 ...
2025-09-09