
來源:早起Python
作者:讀者投稿
最近幾年,比特幣一直站在風口浪尖,一度被追捧為最佳的投資產(chǎn)品,擁護者認為這種加密貨幣是一種類似于黃金的儲值工具,可以對沖通脹和美元疲軟。其他人則認為,比特幣的暴漲只是一個經(jīng)濟刺激措施催生的巨大泡沫,并且必將破裂。
比特幣數(shù)據(jù)很多網(wǎng)站都有,并且也有很多成熟的API,所以取數(shù)據(jù)非常簡單,直接調(diào)用API接口即可,下面是獲取與寫入數(shù)據(jù)的全部代碼
import requests import json import csv import time time_stamp = int(time.time()) url = f"https://web-api.coinmarketcap.com/v1/cryptocurrency/ohlcv/historical?convert=USD&slug
=bitcoin&time_end={time_stamp}&time_start=1367107200"
rd = requests.get(url = url) # 返回的數(shù)據(jù)是 JSON 格式,使用 json 模塊解析 co =
json.loads(rd.content)
list1 = co['data']['quotes']
with open('BTC.csv','w' ,encoding='utf8',newline='') as f:
csvi = csv.writer(f)
csv_head = ["date","price","volume"]
csvi.writerow(csv_head)
for i in list1:
quote_date = i["time_open"][:10]
quote_price = "{:.2f}".format(i["quote"]["USD"]["close"])
quote_volume = "{:.2f}".format(i["quote"]["USD"]["volume"])
csvi.writerow([quote_date, quote_price, quote_volume])
執(zhí)行后,當前目錄就會生成BTC.csv數(shù)據(jù)文件
首先導入需要的包及相關(guān)設(shè)定
import pandas as pd import matplotlib as mpl from matplotlib import cm import numpy
as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import
matplotlib.animation as animation from IPython.display import HTML from datetime import datetime
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rc('axes',axisbelow=True)
mpl.rcParams['animation.embed_limit'] = 2**128
其中兩句plt.rcParams[]是用來設(shè)置顯示中文的
plt.rc('axes',axisbelow=True)的作用是設(shè)置外觀要求,即坐標軸置底。
mpl.rcParams['animation.embed_limit'] = 2**128這句是為了生成動畫而用的,由于動畫默認的最大體積為20971520.字節(jié)。如果需要調(diào)整生成的動畫最大體積,需要更改這個參數(shù)。
接下來數(shù)據(jù)并利用查看前5行與后5行
從表格初窺可以得知,13年初的價格在100美元左右,而到如今21年價格已經(jīng)飛漲到5萬左右了。具體在哪段時間飛漲如此之快呢,我們通過動態(tài)面積可視化來探索。
可視化之前,需要對數(shù)據(jù)進行處理,由于我們原本的數(shù)據(jù)是這樣的
是csv格式,且Date字段是字符串類型,而在Python中運用matplotlib畫時間序列圖都需要datetime時間戳格式才美觀,所以我們運用了如下代碼進行轉(zhuǎn)換
df = pd.read_csv('BTC.csv')
df['date']=[datetime.strptime(d, '%Y/%m/%d').date() for d in df['date']]
下面制作靜態(tài)面積圖,使用單色填充的話,可用如下代碼
Span=180 N_Span=0 df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]
df_temp.head(5)
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.fill_between(df_temp.date.values, y1=df_temp.price.values, y2=0,alpha=0.75, facecolor='r',
linewidth=1,edgecolor ='none',zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',
linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0:Span+1:30],labels=df_temp.date.values[0:Span+1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#獲取邊框 ax.spines['top'].set_color('none') # 設(shè)置上‘脊梁’為無色
ax.spines['right'].set_color('none') # 設(shè)置上‘脊梁’為無色 ax.spines['left'].set_color('none')
# 設(shè)置上‘脊梁’為無色 plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1)
#設(shè)置網(wǎng)格線 plt.show()
其中Span設(shè)定的是多少天的價格,這里我們使用200天。N_Span代表權(quán)重;
df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]代表的是選擇到179行為止的數(shù)據(jù),即180天。
plt.fill_between()是使用單色--紅色填充
得到如下效果
但是一個顏色填充總感覺不夠好看,所以下面使用漸變色填充,使用plt.bar()函數(shù)實現(xiàn)Spectral_r顏色映射。代碼如下:
Span_Date =180
Num_Date =360 #終止日期 df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]
#選擇從Num_Date-Span_Date開始到Num_Date的180天的數(shù)據(jù) colors =
cm.Spectral_r(df_temp.price / float(max(df_temp.price)))
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0: Span_Date +1:30],labels=df_temp.date.values[0: Span_Date +1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#獲取邊框 ax.spines['top'].set_color('none') # 設(shè)置上‘脊梁’為無色 ax.spines['right'].set_color('none')
# 設(shè)置上‘脊梁’為無色 ax.spines['left'].set_color('none') # 設(shè)置上‘脊梁’為無色 plt.grid(axis="y",
c=(217/256,217/256,217/256),linewidth=1) #設(shè)置網(wǎng)格線 plt.show()
這里的數(shù)據(jù)篩選有稍許不同,其中Span_Date設(shè)置初始時間,這里設(shè)置為180即從起始日開始算的180天.
Num_Date設(shè)置的是終止時間。
df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]則是用loc函數(shù)篩選從180天到終止日期的數(shù)據(jù)。
效果如下:
最后,我們來將這幅圖動起來,先將剛剛的繪圖部分封裝
def draw_areachart(Num_Date):
Span_Date=180
ax.clear()
if Num_Date<Span_Date: df_temp=df.loc[0:Num_Date,:] df_span=df.loc[0:Span_Date,:]
colors = cm.Spectral_r(df_span.price.values / float(max(df_span.price.values)))
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1.5,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2) plt.scatter(df_temp.date.values[-1],
df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_span.price.max()*1.68)
plt.xlim(df_span.date.values[0], df_span.date.values[-1])
plt.xticks(ticks=df_span.date.values[0:Span_Date+1:30],labels=df_span.date.values[0:Span_Date+1:30],
rotation=0,fontsize=9)
else: df_temp=df.loc[Num_Date-Span_Date:Num_Date,:] colors = cm.Spectral_r(df_temp.price /
float(max(df_temp.price)))
plt.bar(df_temp.date.values[:-2],df_temp.price.values[:-2],color=colors[:-2],width=1.5,align="center",zorder=1)
plt.plot(df_temp.date[:-2], df_temp.price[:-2], color='k',zorder=2) plt.scatter(df_temp.date.values[-4],
df_temp.price.values[-4], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xlim(df_temp.date.values[0], df_temp.date.values[-1])
plt.xticks(ticks=df_temp.date.values[0:Span_Date+1:30],labels=df_temp.date.values[0:Span_Date+1:30],rotation=0,fontsize=9)
plt.margins(x=0.2) ax.spines['top'].set_color('none') # 設(shè)置上‘脊梁’為紅色
ax.spines['right'].set_color('none') # 設(shè)置上‘脊梁’為無色
ax.spines['left'].set_color('none') # 設(shè)置上‘脊梁’為無色
plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1) #設(shè)置網(wǎng)格線
plt.text(0.01, 0.95,"BTC平均價格($)",transform=ax.transAxes, size=10, weight='light', ha='left')
ax.text(-0.07, 1.03, '2013年到2021年的比特幣BTC價格變化情況',transform=ax.transAxes, size=17, weight='light',
ha='left') fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0.1,left=0.1,right=0.9,hspace=0,wspace=0) draw_areachart(150)
之后使用matplotlib包的animation.FuncAnimation()函數(shù),之后調(diào)用上述編寫的draw_areachart(Num_Date)函數(shù)。
其中輸入的參數(shù)Num_Date是如靜態(tài)可視化中提及的日期作用一樣,賦值為np.arange(0,df.shape[0],1)。
最后使用Ipython包的HTML()函數(shù)將動畫轉(zhuǎn)換成動畫頁面的形式演示。代碼如下:
import matplotlib.animation as animation
from IPython.display import HTML
fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(left=0.12, right=0.98, top=0.85, bottom=0.1,hspace=0,wspace=0)
animator = animation.FuncAnimation(fig, draw_areachart, frames=np.arange(0,df.shape[0],1),
interval=100) HTML(animator.to_jshtml())
函數(shù)FuncAnimation(fig,func,frames,init_func,interval,blit)是繪制動圖函數(shù)。其參數(shù)如下:
“
fig 表示繪制動圖的畫布名稱(figure);func為自定義繪圖函數(shù),如draw_barchart()函數(shù);frames為動畫長度,一次循環(huán)包含的幀數(shù),在函數(shù)運行時,其值會傳遞給函數(shù)draw_barchart (year)的形參“year”;init_func為自定義開始幀可省略;interval表示更新頻率,計量單位為ms;blit表示選擇更新所有點,還是僅更新產(chǎn)生變化的點,應(yīng)選擇為True,但mac電腦用戶應(yīng)選擇False,否則無法顯示。
”
最后效果就是這樣
可以看到在過去的一年中,由于機構(gòu)的興趣日益增加,比特幣上漲超過了6倍,最高突破58000美元/枚,當然可以看到跌起來也是非??植赖?,關(guān)于比特幣,你怎么看?
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實踐的落地者與價值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價值,最終要在 “實踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10機器學習解決實際問題的核心關(guān)鍵:從業(yè)務(wù)到落地的全流程解析 在人工智能技術(shù)落地的浪潮中,機器學習作為核心工具,已廣泛應(yīng)用于 ...
2025-09-09SPSS 編碼狀態(tài)區(qū)域中 Unicode 的功能與價值解析 在 SPSS(Statistical Product and Service Solutions,統(tǒng)計產(chǎn)品與服務(wù)解決方案 ...
2025-09-09