
關(guān)于海量數(shù)據(jù)處理分析的經(jīng)驗總結(jié)_數(shù)據(jù)分析師
一、數(shù)據(jù)量過大,數(shù)據(jù)中什么情況都可能存在。如果說有10條數(shù)據(jù),那么大不了每條去逐一檢查,人為處理,如果有上百條數(shù)據(jù),也可以考慮,如果數(shù)據(jù)上到千萬級別,甚至過億,那不是手工能解決的了,必須通過工具或者程序進行處理,尤其海量的數(shù)據(jù)中,什么情況都可能存在,例如,數(shù)據(jù)中某處格式出了問題,尤其在程序處理時,前面還能正常處理,突然到了某個地方問題出現(xiàn)了,程序終止了。
二、軟硬件要求高,系統(tǒng)資源占用率高。對海量的數(shù)據(jù)進行處理,除了好的方法,最重要的就是合理使用工具,合理分配系統(tǒng)資源。一般情況,如果處理的數(shù)據(jù)過TB級,小型機是要考慮的,普通的機子如果有好的方法可以考慮,不過也必須加大CPU和內(nèi)存,就象面對著千軍萬馬,光有勇氣沒有一兵一卒是很難取勝的。
三、要求很高的處理方法和技巧。這也是本文的寫作目的所在,好的處理方法是一位工程師長期工作經(jīng)驗的積累,也是個人的經(jīng)驗的總結(jié)。沒有通用的處理方法,但有通用的原理和規(guī)則。
那么處理海量數(shù)據(jù)有哪些經(jīng)驗和技巧呢,我把我所知道的羅列一下,以供大家參考:
一、選用優(yōu)秀的數(shù)據(jù)庫工具
現(xiàn)在的數(shù)據(jù)庫工具廠家比較多,對海量數(shù)據(jù)的處理對所使用的數(shù)據(jù)庫工具要求比較高,一般使用Oracle或者DB2,微軟公司SQL Server 2005性能也不錯。另外在BI領(lǐng)域:數(shù)據(jù)庫,數(shù)據(jù)倉庫,多維數(shù)據(jù)庫,數(shù)據(jù)挖掘等相關(guān)工具也要進行選擇,像好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。筆者在實際數(shù)據(jù)分析項目中,對每天6000萬條的日志數(shù)據(jù)進行處理,使用SQL Server 2000需要花費6小時,而使用SQL Server 2005則只需要花費3小時。
二、編寫優(yōu)良的程序代碼
處理數(shù)據(jù)離不開優(yōu)秀的程序代碼,尤其在進行復(fù)雜數(shù)據(jù)處理時,必須使用程序。好的程序代碼對數(shù)據(jù)的處理至關(guān)重要,這不僅僅是數(shù)據(jù)處理準確度的問題,更是數(shù)據(jù)處理效率的問題。良好的程序代碼應(yīng)該包含好的算法,包含好的處理流程,包含好的效率,包含好的異常處理機制等。
三、對海量數(shù)據(jù)進行分區(qū)操作
對海量數(shù)據(jù)進行分區(qū)操作十分必要,例如針對按年份存取的數(shù)據(jù),我們可以按年進行分區(qū),不同的數(shù)據(jù)庫有不同的分區(qū)方式,不過處理機制大體相同。例如SQL Server的數(shù)據(jù)庫分區(qū)是將不同的數(shù)據(jù)存于不同的文件組下,而不同的文件組存于不同的磁盤分區(qū)下,這樣將數(shù)據(jù)分散開,減小磁盤I/O,減小了系統(tǒng)負荷,而且還可以將日志,索引等放于不同的分區(qū)下。
四、建立廣泛的索引
對海量的數(shù)據(jù)處理,對大表建立索引是必行的,建立索引要考慮到具體情況,例如針對大表的分組、排序等字段,都要建立相應(yīng)索引,一般還可以建立復(fù)合索引,對經(jīng)常插入的表則建立索引時要小心,筆者在處理數(shù)據(jù)時,曾經(jīng)在一個ETL流程中,當插入表時,首先刪除索引,然后插入完畢,建立索引,并實施聚合操作,聚合完成后,再次插入前還是刪除索引,所以索引要用到好的時機,索引的填充因子和聚集、非聚集索引都要考慮。
五、建立緩存機制
當數(shù)據(jù)量增加時,一般的處理工具都要考慮到緩存問題。緩存大小設(shè)置的好差也關(guān)系到數(shù)據(jù)處理的成敗,例如,筆者在處理2億條數(shù)據(jù)聚合操作時,緩存設(shè)置為100000條/Buffer,這對于這個級別的數(shù)據(jù)量是可行的。
六、加大虛擬內(nèi)存
如果系統(tǒng)資源有限,內(nèi)存提示不足,則可以靠增加虛擬內(nèi)存來解決。筆者在實際項目中曾經(jīng)遇到針對18億條的數(shù)據(jù)進行處理,內(nèi)存為1GB,1個P4 2.4G的CPU,對這么大的數(shù)據(jù)量進行聚合操作是有問題的,提示內(nèi)存不足,那么采用了加大虛擬內(nèi)存的方法來解決,在6塊磁盤分區(qū)上分別建立了6個4096M的磁盤分區(qū),用于虛擬內(nèi)存,這樣虛擬的內(nèi)存則增加為 4096*6 + 1024 = 25600 M,解決了數(shù)據(jù)處理中的內(nèi)存不足問題。
七、分批處理
海量數(shù)據(jù)處理難因為數(shù)據(jù)量大,那么解決海量數(shù)據(jù)處理難的問題其中一個技巧是減少數(shù)據(jù)量??梢詫A繑?shù)據(jù)分批處理,然后處理后的數(shù)據(jù)再進行合并操作,這樣逐個擊破,有利于小數(shù)據(jù)量的處理,不至于面對大數(shù)據(jù)量帶來的問題,不過這種方法也要因時因勢進行,如果不允許拆分數(shù)據(jù),還需要另想辦法。不過一般的數(shù)據(jù)按天、按月、按年等存儲的,都可以采用先分后合的方法,對數(shù)據(jù)進行分開處理。
八、使用臨時表和中間表
數(shù)據(jù)量增加時,處理中要考慮提前匯總。這樣做的目的是化整為零,大表變小表,分塊處理完成后,再利用一定的規(guī)則進行合并,處理過程中的臨時表的使用和中間結(jié)果的保存都非常重要,如果對于超海量的數(shù)據(jù),大表處理不了,只能拆分為多個小表。如果處理過程中需要多步匯總操作,可按匯總步驟一步步來,不要一條語句完成,一口氣吃掉一個胖子。
九、優(yōu)化查詢SQL語句
在對海量數(shù)據(jù)進行查詢處理過程中,查詢的SQL語句的性能對查詢效率的影響是非常大的,編寫高效優(yōu)良的SQL腳本和存儲過程是數(shù)據(jù)庫工作人員的職責,也是檢驗數(shù)據(jù)庫工作人員水平的一個標準,在對SQL語句的編寫過程中,例如減少關(guān)聯(lián),少用或不用游標,設(shè)計好高效的數(shù)據(jù)庫表結(jié)構(gòu)等都十分必要。筆者在工作中試著對1億行的數(shù)據(jù)使用游標,運行3個小時沒有出結(jié)果,這是一定要改用程序處理了。
十、使用文本格式進行處理
對一般的數(shù)據(jù)處理可以使用數(shù)據(jù)庫,如果對復(fù)雜的數(shù)據(jù)處理,必須借助程序,那么在程序操作數(shù)據(jù)庫和程序操作文本之間選擇,是一定要選擇程序操作文本的,原因為:程序操作文本速度快;對文本進行處理不容易出錯;文本的存儲不受限制等。例如一般的海量的網(wǎng)絡(luò)日志都是文本格式或者csv格式(文本格式),對它進行處理牽扯到數(shù)據(jù)清洗,是要利用程序進行處理的,而不建議導入數(shù)據(jù)庫再做清洗。
十一、 定制強大的清洗規(guī)則和出錯處理機制
海量數(shù)據(jù)中存在著不一致性,極有可能出現(xiàn)某處的瑕疵。例如,同樣的數(shù)據(jù)中的時間字段,有的可能為非標準的時間,出現(xiàn)的原因可能為應(yīng)用程序的錯誤,系統(tǒng)的錯誤等,這是在進行數(shù)據(jù)處理時,必須制定強大的數(shù)據(jù)清洗規(guī)則和出錯處理機制。
十二、 建立視圖或者物化視圖
視圖中的數(shù)據(jù)來源于基表,對海量數(shù)據(jù)的處理,可以將數(shù)據(jù)按一定的規(guī)則分散到各個基表中,查詢或處理過程中可以基于視圖進行,這樣分散了磁盤I/O,正如10根繩子吊著一根柱子和一根吊著一根柱子的區(qū)別。
十三、 避免使用32位機子(極端情況)
目前的計算機很多都是32位的,那么編寫的程序?qū)?nèi)存的需要便受限制,而很多的海量數(shù)據(jù)處理是必須大量消耗內(nèi)存的,這便要求更好性能的機子,其中對位數(shù)的限制也十分重要。
十四、考慮操作系統(tǒng)問題
海量數(shù)據(jù)處理過程中,除了對數(shù)據(jù)庫,處理程序等要求比較高以外,對操作系統(tǒng)的要求也放到了重要的位置,一般是必須使用服務(wù)器的,而且對系統(tǒng)的安全性和穩(wěn)定性等要求也比較高。尤其對操作系統(tǒng)自身的緩存機制,臨時空間的處理等問題都需要綜合考慮。
十五、使用數(shù)據(jù)倉庫和多維數(shù)據(jù)庫存儲
數(shù)據(jù)量加大是一定要考慮OLAP的,傳統(tǒng)的報表可能5、6個小時出來結(jié)果,而基于Cube的查詢可能只需要幾分鐘,因此處理海量數(shù)據(jù)的利器是OLAP多維分析,即建立數(shù)據(jù)倉庫,建立多維數(shù)據(jù)集,基于多維數(shù)據(jù)集進行報表展現(xiàn)和數(shù)據(jù)挖掘等。
十六、使用采樣數(shù)據(jù),進行數(shù)據(jù)挖掘
基于海量數(shù)據(jù)的數(shù)據(jù)挖掘正在逐步興起,面對著超海量的數(shù)據(jù),一般的挖掘軟件或算法往往采用數(shù)據(jù)抽樣的方式進行處理,這樣的誤差不會很高,大大提高了處理效率和處理的成功率。一般采樣時要注意數(shù)據(jù)的完整性和,防止過大的偏差。筆者曾經(jīng)對1億2千萬行的表數(shù)據(jù)進行采樣,抽取出400萬行,經(jīng)測試軟件測試處理的誤差為千分之五,客戶可以接受。
還有一些方法,需要在不同的情況和場合下運用,例如使用代理鍵等操作,這樣的好處是加快了聚合時間,因為對數(shù)值型的聚合比對字符型的聚合快得多。類似的情況需要針對不同的需求進行處理。
海量數(shù)據(jù)是發(fā)展趨勢,對數(shù)據(jù)分析和挖掘也越來越重要,從海量數(shù)據(jù)中提取有用信息重要而緊迫,這便要求處理要準確,精度要高,而且處理時間要短,得到有價值信息要快,所以,對海量數(shù)據(jù)的研究很有前途,也很值得進行廣泛深入的研究。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10