99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀數(shù)據(jù)分析方法:T檢驗和卡方檢驗?_數(shù)據(jù)分析師
數(shù)據(jù)分析方法:T檢驗和卡方檢驗?_數(shù)據(jù)分析師
2014-11-07
收藏


數(shù)據(jù)分析方法:T檢驗和卡方檢驗


     假設(shè)檢驗(HypothesisTesting),或者叫做顯著性檢驗(SignificanceTesting)是數(shù)理統(tǒng)計學(xué)中根據(jù)一定假設(shè)條件由樣本推斷總體的一種方法。其基本原理是先對總體的特征作出某種假設(shè),然后通過抽樣研究的統(tǒng)計推理,對此假設(shè)應(yīng)該被拒絕還是接受作出推斷。既然以假設(shè)為前提,那么在進(jìn)行檢驗前需要提出相應(yīng)的假設(shè):

  H0:原假設(shè)或零假設(shè)(nullhypothesis),即需要去驗證的假設(shè);一般首先認(rèn)定原假設(shè)是正確的,然后根據(jù)顯著性水平選擇是接受還是拒絕原假設(shè)。

  H1:備擇假設(shè)(alternativehypothesis),一般是原假設(shè)的否命題;當(dāng)原假設(shè)被拒絕時,默認(rèn)接受備擇假設(shè)。

  如原假設(shè)是假設(shè)總體均值μ=μ0,則備擇假設(shè)為總體均值μ≠μ0,檢驗的過程就是計算相應(yīng)的統(tǒng)計量和顯著性概率,來驗證原假設(shè)應(yīng)該被接受還是拒絕。

  T檢驗

  T檢驗(TTest)是最常見的一種假設(shè)檢驗類型,主要驗證總體均值間是否存在顯著性差異。T檢驗屬于參數(shù)假設(shè)檢驗,所以它適用的范圍是數(shù)值型的數(shù)據(jù),在網(wǎng)站分析中可以是訪問數(shù)、獨立訪客數(shù)、停留時間等,電子商務(wù)的訂單數(shù)、銷售額等。T檢驗還需要符合一個條件——總體符合正態(tài)分布

  這里不介紹t統(tǒng)計量是怎么計算的,基于t統(tǒng)計量的顯著性概率是怎么查詢的,其實這些計算工具都可以幫我們完成,如果有興趣可以查閱統(tǒng)計類書籍,里面都會有相應(yīng)的介紹。這里介紹的是用Excel的數(shù)據(jù)分析工具來實現(xiàn)T檢驗:

  Excel默認(rèn)并沒有加載“數(shù)據(jù)分析”工具,所以需要我們自己添加加載項,通過文件—選項—加載項—勾選“分析工具庫”來完成添加,之后就可以在“數(shù)據(jù)”標(biāo)簽的最右方找到數(shù)據(jù)分析這個按鈕了,然后就可以開始做T檢驗了,這里以最常見的配對樣本t檢驗為例,比較某個電子商務(wù)網(wǎng)站在改版前后訂單數(shù)是否產(chǎn)生了顯著性差異,以天為單位,抽樣改版前后各10天的數(shù)據(jù)進(jìn)行比較:

  改版前訂單數(shù)改版后訂單數(shù)

  首先建立假設(shè):

  H0:μ1=μ2,改版前后每天訂單數(shù)均值相等;

  H1:μ1≠μ2,改版前后每天訂單數(shù)均值不相等。

  將數(shù)據(jù)輸入Excel,使用Excel的數(shù)據(jù)分析工具,選擇“t檢驗:平均值的成對二樣本分析”,輸出檢驗結(jié)果:

t-test-sample

  看到右側(cè)顯示的結(jié)果是不是有點暈了,看上去有點專業(yè),其實也并不難,只要關(guān)注一個數(shù)值的大小——單尾的P值,這里是0.00565,如果需要驗證在95%的置信水平下的顯著性,那么0.00565顯然小于0.05(1-95%),拒絕零假設(shè),認(rèn)為改版前后的訂單數(shù)存在顯著性差異。簡單說下為什么選擇單尾顯著性概率P,而不是雙尾,對于大部分網(wǎng)站分析的應(yīng)用環(huán)境,我們一般需要驗證改動前后數(shù)值是否存在明顯提升或下降,所以一般而言只會存在一類可能——或者提升或者下降,所以只要檢驗單側(cè)的概率即可,就像上面例子中改版后的訂單數(shù)均值1240.6大于改版前的1097.3,我們需要驗證的就是這種“大于”是否是顯著的,也就是做的是左側(cè)單邊檢驗,這種情況下只要關(guān)注單尾的顯著性概率P即可。

  卡方檢驗

  卡方檢驗(chi-squaretest),也就是χ2檢驗,用來驗證兩個總體間某個比率之間是否存在顯著性差異??ǚ綑z驗屬于非參數(shù)假設(shè)檢驗,適用于布爾型或二項分布數(shù)據(jù),基于兩個概率間的比較,早期用于生產(chǎn)企業(yè)的產(chǎn)品合格率等,在網(wǎng)站分析中可以用于轉(zhuǎn)化率、BounceRate等所有比率度量的比較分析,其實在之前的文章——AbandonmentRate的影響因素進(jìn)行過相關(guān)的應(yīng)用。這里同樣不去介紹χ2是如何計算得到的,以及基于χ2統(tǒng)計量的顯著性概率的查詢等,這里直接以轉(zhuǎn)化率為例來比較網(wǎng)站改版前后轉(zhuǎn)化率是否發(fā)生了顯著性差異,抽樣改版前后各3天的網(wǎng)站分析數(shù)據(jù)——總訪問數(shù)和轉(zhuǎn)化的訪問數(shù),用“轉(zhuǎn)化訪問數(shù)/總訪問數(shù)”計算得到轉(zhuǎn)化率:

  改版前改版后

  總訪問數(shù)3056733651

  轉(zhuǎn)化訪問數(shù)29763698

  轉(zhuǎn)化率9.74%10.99%

  首先建立假設(shè):

  H0:r1=r2,改版前后轉(zhuǎn)化率相等;

  H1:r1≠r2,改版前后轉(zhuǎn)化率不相等。

  其實這是一個最簡單的四格卡方檢驗的例子,也無需使用SPSS(當(dāng)然你足夠熟悉SPSS也可以使用類似的統(tǒng)計分析工具),為了簡化中間的計算步驟,我這里用Excel直接制作了一個簡單的卡方檢驗的模板,只要在相應(yīng)的單元格輸入統(tǒng)計數(shù)據(jù)就能自動顯示檢驗的結(jié)果:

chi-square-test-sample

  點擊下載:卡方檢驗示例

  Excel中淺藍(lán)色的單元格都支持輸入,包括原用方案和測試方案的總訪問數(shù)和轉(zhuǎn)化訪問數(shù),另外置信度95%也是支持修改了,如果你需要99%的置信水平,只要修改這個單元格即可。

  怎么看檢驗結(jié)果?其實非常簡單,只要看那個紅色的“存在”單元格的顯示結(jié)果即可,上面的案例中兩者的轉(zhuǎn)化率“存在”顯著性差異,如果不存在,則該單元格相應(yīng)的就會顯示“不存在”,有了這個模板對于A/BTesting等類似的數(shù)據(jù)比較也顯得非常簡單容易,或者說其實這個Excel模板就是為了A/BTesting而量身定制的。

;)

  好了,就到這里吧,其實這篇文章并不是想從專業(yè)的統(tǒng)計學(xué)的角度來介紹T檢驗和卡方檢驗,只是想讓大家了解這兩個方法的原理和適用條件,能夠用最簡單的方式去使用諸如此類的方法讓數(shù)據(jù)更具說服力,請繼續(xù)關(guān)注之后奉上的應(yīng)用實例。(文章來源:CDA數(shù)據(jù)分析師)

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個參數(shù)驗證碼對象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時表示是新驗證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }