
數(shù)據(jù)分析基本思路及手法_數(shù)據(jù)分析師培訓
數(shù)據(jù)分析,是產(chǎn)品運營極具戰(zhàn)略意義的一環(huán);從宏觀到微觀分析,通過表層數(shù)據(jù)挖掘產(chǎn)品問題,是每個運營人的必修課。
首先,我們來看比較常見的分析方法:
5W2H分析法:What(用戶要什么?)Why(為什么要?)Where(從哪兒得到?)When(我們什么時候做?)Who(對誰做?)Howmuch(給多少?)How(怎么做?)
PS:(what)用戶要極品裝備?。╳hy)因為他們要增強戰(zhàn)力(where)裝備從BOSS身上得到;(when)我們國慶節(jié)做這個活動?。╳ho)針對所有玩家?。╤owmuch)BOSS爆率設定為XX(how)活動以怪物攻城形式進行。
上述是一種需求的轉(zhuǎn)換形式,就產(chǎn)品而言,又要以數(shù)據(jù)為支持,不能因某個元素而動整體;從大局出發(fā),根據(jù)整體數(shù)據(jù)趨勢進行細化分析,那么就目前而言的分析手法,又有對比分析、交叉分析,相關分析,回歸分析,聚類分析等等。
如果某款游戲下載量高,注冊量低;是否因為服務器登陸問題或注冊流程繁瑣,是否近期網(wǎng)絡出現(xiàn)故障........
如果某款游戲數(shù)據(jù)一直良好,某段時間數(shù)據(jù)突然跌落;是否因為市場宣傳力度減弱,是否因為用戶生命周期上限,是否因為其他競品沖擊........
真正的數(shù)據(jù)分析不在于數(shù)據(jù)本身,而在于分析能力的概述;數(shù)據(jù)是參照物,是標桿,只有分析才是行為,是改變;那么如何分析,綜合上面兩個舉例,已經(jīng)可以很清晰的看到立體式分析。
立體式分析,也就是維度分析;產(chǎn)品數(shù)據(jù)的發(fā)掘不應該僅僅拘泥于產(chǎn)品;大環(huán)境下的娛樂產(chǎn)物必須綜合產(chǎn)品、市場、用戶進行不同切入點分析;要知道,數(shù)據(jù)分析是基于商業(yè)目的,而商業(yè)離不開用戶和市場;說白了就是結(jié)合不同維度進行有目的的數(shù)據(jù)收集、整理、加過和分析,他的存在價值就是通過數(shù)據(jù)提取有價值的信息去優(yōu)化產(chǎn)品從而拉更多人,賺更多錢。
那么如何分析,大致思路又是如何?
[為什么分析?]
首先,你得知道為什么分析?付費同比、環(huán)比波動較大?
[分析目標是誰?]
數(shù)據(jù)波動,目標是誰?付費總額波動,付費用戶數(shù)據(jù)如何?
[想達到什么效果?]
通過分析付費用戶,找到問題,解決問題從而提升收入?
[需要什么?]
想做出分析,需要什么?付費總額,付費人數(shù)?付費次數(shù)?付費人數(shù)各等級占比?
[如何采集?]
直接數(shù)據(jù)庫調(diào)???或者交給程序猿導出?
[如何整理?]
數(shù)據(jù)出來,如何整理付費等級、付費次數(shù)報表?
[如何分析?]
整理完畢,如何對數(shù)據(jù)進行綜合分析,相關分析?用戶資源是否飽和?市場其他明星產(chǎn)品充值活動更具吸引力?產(chǎn)品付費系統(tǒng)是否出現(xiàn)問題,是否失去新鮮感?
[如何展現(xiàn)?]
找準問題,老付費用戶流失了很多,低端付費轉(zhuǎn)化低;很多是多少?轉(zhuǎn)化低是什么概念?如何用圖表表現(xiàn)?
[如何輸出?]
找準問題,如何輸出;如何將這份知識報表轉(zhuǎn)換為產(chǎn)品商業(yè)價值體系;如何說服程序?如何說服策劃?如何具體執(zhí)行?如何將知識轉(zhuǎn)換為生產(chǎn)力?
上述是比較系統(tǒng)的分析思路,細化而言;對于數(shù)據(jù)分析,又需要我們根據(jù)不同人群建立不同的用戶模型;例如流失模型、流失特征;充值模型等等。
接下來我們再綜合AARRR模型分解一些較為常見的數(shù)據(jù):
Acquisition(獲?。?、Activation(活躍)、Retention(留存)、Revenue(收益)、Refer(傳播)
上圖為AARRR模型中的基本數(shù)據(jù),我們再對以往數(shù)據(jù)進行總結(jié):
日新增用戶數(shù):DNU;每日注冊并登陸游戲用戶數(shù),主要衡量渠道貢獻新用戶份額以及質(zhì)量。
一次會話用戶:DOSU;新登用戶中只有一次會話的用戶,主要衡量渠道推廣質(zhì)量如何,產(chǎn)品初始轉(zhuǎn)化情況,用戶導入障礙點檢查。
日活躍用戶:DAU;每日登陸過游戲的用戶數(shù),主要衡量核心用戶規(guī)模,用戶整體趨勢隨產(chǎn)品周期階段變化,細分可概括新用戶轉(zhuǎn)化、老用戶活躍與流失情況。
周/月活躍用戶:WAU、MAU;截止統(tǒng)計日,周/月登陸游戲用戶數(shù),主要衡量周期用戶規(guī)模,產(chǎn)品粘性,以及產(chǎn)品生命周期性的數(shù)據(jù)趨勢表現(xiàn)。
用戶活躍度:DAU/MAU;主要衡量用戶粘度,通過公式計算用戶游戲參與度,人氣發(fā)展趨勢,以及用戶活躍天數(shù)統(tǒng)計。
留存:次日、三日、七日、雙周、月留存;表現(xiàn)不同時期,用戶對游戲的適應性,評估渠道用戶質(zhì)量;衡量用戶對游戲黏性。
付費率:PUR,統(tǒng)計時間內(nèi),付費用戶占活躍用戶比例;主要衡量產(chǎn)品付費引導是否合理,付費點是否吸引人;付費活動是否引導用戶付費傾向,付費轉(zhuǎn)化是否達到預期。
活躍付費用戶數(shù):APA;統(tǒng)計時間內(nèi),成功付費用戶數(shù),主要衡量產(chǎn)品付費用戶規(guī)模,付費用戶構成,付費體系穩(wěn)定性如何。
每活躍用戶平均收益:ARPU;統(tǒng)計時間內(nèi),活躍用戶對游戲產(chǎn)生的人均收入,主要衡量不同渠道的用戶質(zhì)量,游戲收益,以及活躍用戶與人均貢獻關系。
每付費用戶平均收益:ARPPU;統(tǒng)計時間內(nèi),付費用戶對游戲產(chǎn)生的平均收入,主要衡量游戲付費用戶的付費水平,整體付費趨勢,以及不同付費用戶有何特征。
平均生命周期:TV;統(tǒng)計周期內(nèi),用戶平均游戲會話時長,主要衡量產(chǎn)品粘性,用戶活躍度情況。
生命周期價值:LTV;用戶在生命周期內(nèi),為游戲貢獻價值;主要衡量用戶群與渠道的利潤貢獻,用戶在游戲中的價值表現(xiàn)。
用戶獲取成本:CAC;用戶獲取成本,主要衡量獲取有效用戶的成本,便于渠道選擇,市場投放。
投入產(chǎn)出比:ROI;投入與產(chǎn)出關系對比,主要衡量產(chǎn)品推廣盈利/虧損狀態(tài),篩選推廣渠道,分析每個渠道的流量變現(xiàn)能力,實時分析,衡量渠道付費流量獲取的邊際效應,拿捏投入力度,結(jié)合其他數(shù)據(jù)(新增、流失、留存、付費等)調(diào)整游戲,進行流量轉(zhuǎn)化與梳理。
最后便是一種較為常見的數(shù)據(jù)分析手法:杜邦分析法
以上是關于數(shù)據(jù)的一些概括,對于數(shù)據(jù)分析,需要我們以理性的眼光對待;因為各家對相關數(shù)據(jù)定義不同,算法不同;在對數(shù)據(jù)進行分析時需要我們看清分析誤區(qū),綜合其他數(shù)據(jù)進行分析,根據(jù)自己的數(shù)據(jù)分析思路制定相應的分析方案,切不可盲目分析,粗暴分析。
最后值得注意的是精細化的運營數(shù)據(jù)分析工作,思維不能亂,思維亂了,全盤皆亂;這時候的數(shù)據(jù)分析也無法提供正確的考量價值,如果覺得數(shù)據(jù)分析毫無頭緒,雜亂無章;冷靜下來,理順思路,有大概的數(shù)據(jù)構思之后再做行動;只有這樣才能培養(yǎng)自己嚴謹?shù)倪壿嫹治瞿芰Α?/span>
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓練與驗證損失驟升:機器學習訓練中的異常診斷與解決方案 在機器學習模型訓練過程中,“損失曲線” 是反映模型學習狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構數(shù)據(jù)價值的核心操盤手 表格結(jié)構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11