
大數(shù)據(jù)從無(wú)人談及,到現(xiàn)在的大肆炒作,到底什么才是大數(shù)據(jù),對(duì)于數(shù)據(jù)分析師,它有意味著什么?本文將為您解答?!?
我用Google搜索了一下“Big Data”,得到了19,600,000個(gè)結(jié)果……而使用同樣的詞語(yǔ),在兩年前你幾乎搜索不到什么內(nèi)容,而現(xiàn)在大數(shù)據(jù)的內(nèi)容被大肆炒作,內(nèi)容多得讓人眼花繚亂。而這些內(nèi)容主要是來(lái)自IBM、麥肯錫和O’Reilly ,大多數(shù)文章都是基于營(yíng)銷目的的夸夸其談,對(duì)真實(shí)的情況并不了解,有些觀點(diǎn)甚至是完全錯(cuò)誤的。我問(wèn)自己…… 大數(shù)據(jù)之于數(shù)據(jù)分析師,它意味著什么呢?
如下圖所示,谷歌趨勢(shì)顯示,與“網(wǎng)站分析”(web analytics)和”商業(yè)智能”(business intelligence)較為平穩(wěn)的搜索曲線相比,“大數(shù)據(jù)”(big data)的搜索量迎來(lái)了火箭式的大幅度增長(zhǎng)。
大數(shù)據(jù) – 炒作
Gartner把“大數(shù)據(jù)”的發(fā)展階段定位在“社交電視”和“移動(dòng)機(jī)器人”之間,正向著中部期望的高峰點(diǎn)邁進(jìn),而現(xiàn)在是達(dá)到較為成熟的階段前的二至五年。這種定位有著其合理性。各種奏唱著“大數(shù)據(jù)”頌歌的產(chǎn)品數(shù)量正在迅速增長(zhǎng),大眾媒體也進(jìn)入了“大數(shù)據(jù)”主題的論辯中,比如紐約時(shí)報(bào)的“大數(shù)據(jù)的時(shí)代“,以及一系列在福布斯上發(fā)布的題為” 大數(shù)據(jù)技術(shù)評(píng)估檢查表“的文章。
進(jìn)步的一面體現(xiàn)在,大數(shù)據(jù)的概念正在促使內(nèi)部組織的文化發(fā)生轉(zhuǎn)變,對(duì)過(guò)時(shí)的“商務(wù)智能”形成挑戰(zhàn),并促進(jìn)了“分析”意識(shí)的提升。
基于大數(shù)據(jù)的創(chuàng)新技術(shù)可以很容易地被應(yīng)用到類似數(shù)據(jù)分析的各種環(huán)境中。值得一提的是,企業(yè)組織通過(guò)應(yīng)用先進(jìn)的業(yè)務(wù)分析,業(yè)務(wù)將變得更廣泛、更復(fù)雜,價(jià)值也更高,而傳統(tǒng)的網(wǎng)站分析受到的關(guān)注將會(huì)有所減弱。
大數(shù)據(jù) – 定義
什么是“大數(shù)據(jù)”,目前并沒(méi)有統(tǒng)一的定義。維基百科提供的定義有些拙劣,也不完整:“ 大數(shù)據(jù),指的是所涉及的數(shù)據(jù)量規(guī)模巨大到無(wú)法通過(guò)主流的工具,在合理的時(shí)間內(nèi)擷取、管理、處理、并整理成為人們所能解讀的信息 “。
IBM 提供了一個(gè)充分的簡(jiǎn)單易懂的概述:
大數(shù)據(jù)有以下三個(gè)特點(diǎn):大批量(Volume)、高速度(Velocity)和多樣化(Variety) 。
大批量 – 大數(shù)據(jù)體積龐大。企業(yè)里到處充斥著數(shù)據(jù),信息動(dòng)不動(dòng)就達(dá)到了TB級(jí),甚至是PB級(jí)。
高速度 – 大數(shù)據(jù)通常對(duì)時(shí)間敏感。為了最大限度地發(fā)揮其業(yè)務(wù)價(jià)值,大數(shù)據(jù)必須及時(shí)使用起來(lái)。
多樣化 – 大數(shù)據(jù)超越了結(jié)構(gòu)化數(shù)據(jù),它包括所有種類的非結(jié)構(gòu)化數(shù)據(jù),如文本、音頻、視頻、點(diǎn)擊流、日志文件等等都可以是大數(shù)據(jù)的組成部分。
MSDN的布萊恩·史密斯在IBM的基礎(chǔ)上增加了第四點(diǎn):
變異性 – 數(shù)據(jù)可以使用不同的定義方式來(lái)進(jìn)行解釋。不同的問(wèn)題需要不同的闡釋。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無(wú)論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開(kāi)的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開(kāi)始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開(kāi)發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤(pán)手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問(wèn)題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問(wèn)題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問(wèn)題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過(guò)程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見(jiàn)頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無(wú)監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10