
大數(shù)據(jù)和BI商業(yè)智能的差別和影響
BI(BusinessIntelligence)即商務(wù)智能,它是一套完整的解決方案,用來(lái)將企業(yè)中現(xiàn)有的數(shù)據(jù)進(jìn)行有效的整合,快速準(zhǔn)確的提供報(bào)表并提出決策依據(jù),幫助企業(yè)做出明智的業(yè)務(wù)經(jīng)營(yíng)決策。
伴隨著B(niǎo)I的發(fā)展,是ETL,數(shù)據(jù)集成平臺(tái)等概念的提出。ETL,Extraction Transformation Loading,數(shù)據(jù)提取、轉(zhuǎn)換和加載,數(shù)據(jù)集成平臺(tái)主要功能對(duì)各種業(yè)務(wù)數(shù)據(jù)進(jìn)行抽取和相關(guān)轉(zhuǎn)化,以此來(lái)滿足BI、數(shù)據(jù)倉(cāng)庫(kù)對(duì)數(shù)據(jù)格式和內(nèi)容挖掘的要求。
數(shù)據(jù)集成平臺(tái)的基礎(chǔ)工作與ETL有很大的相似性,其主要功能是實(shí)現(xiàn)不同系統(tǒng)不同格式數(shù)據(jù)地抽取,并且按照目標(biāo)需求轉(zhuǎn)化成為相應(yīng)的格式。數(shù)據(jù)集成開(kāi)始是點(diǎn)對(duì)點(diǎn)的,慢慢地發(fā)現(xiàn)這種模式對(duì)于系統(tǒng)之間,不同所有權(quán)的企業(yè)數(shù)據(jù)流向以及數(shù)據(jù)標(biāo)準(zhǔn)控制很難,為此,誕生了對(duì)統(tǒng)一企業(yè)數(shù)據(jù)平臺(tái)的需求,來(lái)實(shí)現(xiàn)企業(yè)級(jí)之間的數(shù)據(jù)交互。
數(shù)據(jù)集成平臺(tái)就像網(wǎng)絡(luò)中Hub,可以連接所有應(yīng)用系統(tǒng),實(shí)現(xiàn)系統(tǒng)之間數(shù)據(jù)的互通有無(wú)。數(shù)據(jù)集成平臺(tái)以BI、數(shù)據(jù)倉(cāng)庫(kù)需求而產(chǎn)生,現(xiàn)在已經(jīng)跨越了最初的需求,上升到了一個(gè)更高的階段。
如今大數(shù)據(jù)應(yīng)用更多關(guān)注非結(jié)構(gòu)化數(shù)據(jù),更多談?wù)摶ヂ?lián)網(wǎng),Twitter、Facebook、博客等非結(jié)構(gòu)化數(shù)據(jù),如此理解大數(shù)據(jù)應(yīng)用,顯然就有些走偏了。結(jié)構(gòu)化數(shù)據(jù)也屬于大數(shù)據(jù),且呈現(xiàn)出相同的特點(diǎn)和特征,如數(shù)據(jù)量大,增長(zhǎng)越來(lái)越快,對(duì)數(shù)據(jù)處理要求高等。
結(jié)構(gòu)化數(shù)據(jù)是廣義大數(shù)據(jù)中含金量或者價(jià)值密度最高的一部分?jǐn)?shù)據(jù),與之相比,非結(jié)構(gòu)化數(shù)據(jù)含金量高但價(jià)值密度低。在Hadoop平臺(tái)出現(xiàn)之前,沒(méi)有人談?wù)摯髷?shù)據(jù)。數(shù)據(jù)應(yīng)用主要是結(jié)構(gòu)化數(shù)據(jù),多采用IBM、HP等老牌廠商的小型機(jī)或服務(wù)器設(shè)備。
采用傳統(tǒng)方法處理這些價(jià)值密度低的非結(jié)構(gòu)化數(shù)據(jù),被認(rèn)為是不值得的,因?yàn)槠洚a(chǎn)出實(shí)在是有限。Hadoop平臺(tái)出現(xiàn)之后,提供了一種開(kāi)放的、廉價(jià)的、基于普通商業(yè)硬件的平臺(tái),其核心是分布式大規(guī)模并行處理,從而為非結(jié)構(gòu)化數(shù)據(jù)處理創(chuàng)造條件。
大數(shù)據(jù)應(yīng)用的數(shù)據(jù)來(lái)源應(yīng)該包括結(jié)構(gòu)化數(shù)據(jù),如各種數(shù)據(jù)庫(kù)、各種結(jié)構(gòu)化文件、消息隊(duì)列和應(yīng)用系統(tǒng)數(shù)據(jù)等,其次才是非結(jié)構(gòu)化數(shù)據(jù),又可以進(jìn)一步細(xì)分為兩部分,一是社交媒體,如Twitter、Facebook、博客等產(chǎn)生的數(shù)據(jù),包括用戶點(diǎn)擊的習(xí)慣/特點(diǎn),發(fā)表的評(píng)論,評(píng)論的特點(diǎn),網(wǎng)民之間的關(guān)系等,這些都構(gòu)成了大數(shù)據(jù)來(lái)源。另外一部分?jǐn)?shù)據(jù),也是數(shù)據(jù)量比較大的數(shù)據(jù),就是機(jī)器設(shè)備以及傳感器所產(chǎn)生的數(shù)據(jù)。以電信行業(yè)為例,CDR、呼叫記錄,這些數(shù)據(jù)都屬于原始傳感器數(shù)據(jù),主要來(lái)自路由器或者基站。此外,手機(jī)的置傳感器,各種手持設(shè)備、門禁系統(tǒng),攝像頭、ATM機(jī)等,其數(shù)據(jù)量也非常巨大。
對(duì)于分析大數(shù)據(jù)的工具,目前所有的分析工具都側(cè)重于結(jié)構(gòu)化分析,例如針對(duì)社交媒體評(píng)論方向的分析,根據(jù)特定的詞頻或者語(yǔ)義,通過(guò)統(tǒng)計(jì)正面/負(fù)面評(píng)論的比例,來(lái)確定評(píng)論性質(zhì)。如果有一個(gè)應(yīng)用系統(tǒng)是接收結(jié)構(gòu)化數(shù)據(jù)的,例如一個(gè)分析系統(tǒng),接收這些語(yǔ)義就可以便于分析。
讓大數(shù)據(jù)應(yīng)用落地,其中的關(guān)鍵在于與行業(yè)應(yīng)用的深度融合。
公安行業(yè)的視頻影像處理是一個(gè)特定應(yīng)用領(lǐng)域,傳統(tǒng)BI、ETL工具拿這些數(shù)據(jù)沒(méi)有辦法,采用分布式Hadoop進(jìn)行處理能夠帶來(lái)很好的效益,因?yàn)?a href='/map/hadoop/' style='color:#000;font-size:inherit;'>Hadoop可以處理數(shù)據(jù)量足夠大。公安行業(yè)實(shí)際上已采集了大量視頻影像數(shù)據(jù),利用這些數(shù)據(jù),可以追蹤一個(gè)嫌疑犯的行蹤,什么時(shí)間在全國(guó)哪些地區(qū)出現(xiàn)過(guò)。這些應(yīng)用不可能單純依靠人的力量,需要借助人臉識(shí)別、圖像識(shí)別技術(shù)、模式處理,數(shù)據(jù)壓縮等技術(shù),需要海量處理軟件,抓出相關(guān)特征,幫助公安人員提高工作效率。
在電信行業(yè),計(jì)費(fèi)系統(tǒng)實(shí)際上是對(duì)各種數(shù)據(jù)進(jìn)行整合后的結(jié)果,是一個(gè)縮小的數(shù)據(jù)。借助大數(shù)據(jù)應(yīng)用,運(yùn)營(yíng)商可以原始大數(shù)據(jù)進(jìn)行分析,例如分析傳感器數(shù)據(jù)是否有異常,從而判斷設(shè)備異常等,這些都是一些用傳統(tǒng)BI工具無(wú)法實(shí)現(xiàn)的分析,其結(jié)果往往會(huì)出乎意料,幫助運(yùn)營(yíng)商提高服務(wù)水平以及用戶的滿意度。
在互聯(lián)網(wǎng)行業(yè),通過(guò)分析手機(jī)上網(wǎng)軌跡,可以分析了解客戶群,了解用戶的偏好,此外,獲取地理位置的信息,也具有特定價(jià)值。
從這些行業(yè)大數(shù)據(jù)應(yīng)用分析來(lái)看,一個(gè)是視頻影像處理,一個(gè)是日志分析,另外一個(gè)是處理特定文件格式的分析處理,彼此之間顯然沒(méi)有任何通用性的特點(diǎn),其共同點(diǎn)就是利用了廉價(jià)的大數(shù)據(jù)處理平臺(tái)。
Gartner:大數(shù)據(jù)宣傳在商務(wù)智能市場(chǎng)成效不明顯
市場(chǎng)研究公司Gartner指出,去年的大數(shù)據(jù)宣傳未能促進(jìn)全球商務(wù)智能和分析市場(chǎng)出現(xiàn)快速增長(zhǎng)。
Gartner稱,盡管商務(wù)智能和分析市場(chǎng)在2013年增長(zhǎng)了8%,增長(zhǎng)至144億美元,但是漲幅低于預(yù)期。大數(shù)據(jù)通常指對(duì)來(lái)自社交網(wǎng)絡(luò)、傳感器等來(lái)源的海量非結(jié)構(gòu)化信息進(jìn)行的挖掘與分析,而傳統(tǒng)的商務(wù)智能只是報(bào)告和分析結(jié)構(gòu)化數(shù)據(jù)存儲(chǔ)。
Gartner 分析師Dan Sommer和Bhavish Sood在報(bào)告寫道: “雖然大數(shù)據(jù)宣傳力度在2013年達(dá)到了高潮,但是對(duì)分析市場(chǎng)的影響卻不是很大?!眻?bào)告稱,在Gartner調(diào)研的機(jī)構(gòu)中,僅8%的機(jī)構(gòu)實(shí)際部署了大數(shù)據(jù)項(xiàng)目,57%的機(jī)構(gòu)仍處于調(diào)研和規(guī)劃階段。這一水平已經(jīng)影響到了大量企業(yè)的創(chuàng)新周期。
大數(shù)據(jù)巨頭在2013年的營(yíng)利與增長(zhǎng)速度之間出現(xiàn)了脫節(jié)。SAP、甲骨文、IBM和賽仕研究所等四大商務(wù)智能公司的增長(zhǎng)率嚴(yán)重低于市場(chǎng)平均增長(zhǎng)率。這些廠商面臨的核心挑戰(zhàn)是他們的成熟程度?!八麄兊暮诵慕鉀Q方案一直是IT主導(dǎo)的企業(yè)商務(wù)智能平臺(tái),并通過(guò)語(yǔ)義層將信息與報(bào)告、查詢與在線分析處理等功能連接在一起。盡管價(jià)值昂貴,但是大多數(shù)機(jī)構(gòu)部署的均為這種類型的商務(wù)智能解決方案?!?/span>
為此類工具提升了低成本備選方案的Jaspersoft和Pentaho等公司在去年獲得了快速增長(zhǎng),其增長(zhǎng)率高于市場(chǎng)平均增長(zhǎng)率。Gartner的報(bào)告指出,Tibco Spotfire和Tableau等公司在2013年推出的數(shù)據(jù)發(fā)現(xiàn)工具對(duì)于商務(wù)智能終端用戶體驗(yàn)來(lái)說(shuō)可以說(shuō)是一種全新的標(biāo)準(zhǔn)。這些工具讓用戶對(duì)數(shù)據(jù)集有了更多的視覺(jué)感受。
分析師指出,大型商務(wù)智能廠商去年一直在不遺余力的開(kāi)發(fā)自己的數(shù)據(jù)發(fā)現(xiàn)產(chǎn)品。這一舉措將整個(gè)市場(chǎng)的競(jìng)爭(zhēng)推出到了一個(gè)更激烈的階段。基于云的商務(wù)智能在去年開(kāi)始受到關(guān)注。盡管其僅占有4%的市場(chǎng)份額,但是其增長(zhǎng)率達(dá)到了42%。“尤其是小型公司已經(jīng)開(kāi)始向云遷移,并將其視為一種可以處于有關(guān)大數(shù)據(jù)和分析等事務(wù)的使能器。”
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開(kāi)啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03