
大數(shù)據(jù)究竟是什么4_數(shù)據(jù)分析師
大數(shù)據(jù)常和云計(jì)算聯(lián)系到一起,因?yàn)閷?shí)時(shí)的大型數(shù)據(jù)集分析需要分布式處理框架來向數(shù)十、數(shù)百或甚至數(shù)萬的電腦分配工作??梢哉f,云計(jì)算充當(dāng)了工業(yè)革命時(shí)期的發(fā)動(dòng)機(jī)的角色,而大數(shù)據(jù)則是電。
云計(jì)算思想的起源是麥卡錫在上世紀(jì)60年代提出的:把計(jì)算能力作為一種像水和電一樣的公用事業(yè)提供給用戶。
如今,在Google、Amazon、Facebook等一批互聯(lián)網(wǎng)企業(yè)引領(lǐng)下,一種行之有效的模式出現(xiàn)了:云計(jì)算提供基礎(chǔ)架構(gòu)平臺(tái),大數(shù)據(jù)應(yīng)用運(yùn)行在這個(gè)平臺(tái)上。
業(yè)內(nèi)是這么形容兩者的關(guān)系:沒有大數(shù)據(jù)的信息積淀,則云計(jì)算的計(jì)算能力再?gòu)?qiáng)大,也難以找到用武之地;沒有云計(jì)算的處理能力,則大數(shù)據(jù)的信息積淀再豐富,也終究只是鏡花水月。
那么大數(shù)據(jù)到底需要哪些云計(jì)算技術(shù)呢?
這里暫且列舉一些,比如虛擬化技術(shù),分布式處理技術(shù),海量數(shù)據(jù)的存儲(chǔ)和管理技術(shù),NoSQL、實(shí)時(shí)流數(shù)據(jù)處理、智能分析技術(shù)(類似模式識(shí)別以及自然語言理解)等。
云計(jì)算和大數(shù)據(jù)之間的關(guān)系可以用下面的一張圖來說明,兩者之間結(jié)合后會(huì)產(chǎn)生如下效應(yīng):可以提供更多基于海量業(yè)務(wù)數(shù)據(jù)的創(chuàng)新型服務(wù);通過云計(jì)算技術(shù)的不斷發(fā)展降低大數(shù)據(jù)業(yè)務(wù)的創(chuàng)新成本。
如果將云計(jì)算與大數(shù)據(jù)進(jìn)行一些比較,最明顯的區(qū)分在兩個(gè)方面:
第一,在概念上兩者有所不同,云計(jì)算改變了IT,而大數(shù)據(jù)則改變了業(yè)務(wù)。然而大數(shù)據(jù)必須有云作為基礎(chǔ)架構(gòu),才能得以順暢運(yùn)營(yíng)。
第二,大數(shù)據(jù)和云計(jì)算的目標(biāo)受眾不同,云計(jì)算是CIO等關(guān)心的技術(shù)層,是一個(gè)進(jìn)階的IT解決方案。而大數(shù)據(jù)是CEO關(guān)注的、是業(yè)務(wù)層的產(chǎn)品,而大數(shù)據(jù)的決策者是業(yè)務(wù)層。
分布式處理系統(tǒng)可以將不同地點(diǎn)的或具有不同功能的或擁有不同數(shù)據(jù)的多臺(tái)計(jì)算機(jī)用通信網(wǎng)絡(luò)連接起來,在控制系統(tǒng)的統(tǒng)一管理控制下,協(xié)調(diào)地完成信息處理任務(wù)—這就是分布式處理系統(tǒng)的定義。
以Hadoop(Yahoo)為例進(jìn)行說明,Hadoop是一個(gè)實(shí)現(xiàn)了MapReduce模式的能夠?qū)Υ罅繑?shù)據(jù)進(jìn)行分布式處理的軟件框架,是以一種可靠、高效、可伸縮的方式進(jìn)行處理的。
而MapReduce是Google提出的一種云計(jì)算的核心計(jì)算模式,是一種分布式運(yùn)算技術(shù),也是簡(jiǎn)化的分布式編程模式,MapReduce模式的主要思想是將自動(dòng)分割要執(zhí)行的問題(例如程序)拆解成map(映射)和reduce(化簡(jiǎn))的方式, 在數(shù)據(jù)被分割后通過Map 函數(shù)的程序?qū)?shù)據(jù)映射成不同的區(qū)塊,分配給計(jì)算機(jī)機(jī)群處理達(dá)到分布式運(yùn)算的效果,在通過Reduce 函數(shù)的程序?qū)⒔Y(jié)果匯整,從而輸出開發(fā)者需要的結(jié)果。
再來看看Hadoop的特性,第一,它是可靠的,因?yàn)樗僭O(shè)計(jì)算元素和存儲(chǔ)會(huì)失敗,因此它維護(hù)多個(gè)工作數(shù)據(jù)副本,確保能夠針對(duì)失敗的節(jié)點(diǎn)重新分布處理。其次,Hadoop 是高效的,因?yàn)樗圆⑿械姆绞焦ぷ鳎ㄟ^并行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級(jí)數(shù)據(jù)。此外,Hadoop 依賴于社區(qū)服務(wù)器,因此它的成本比較低,任何人都可以使用。
你也可以這么理解Hadoop的構(gòu)成,Hadoop=HDFS(文件系統(tǒng),數(shù)據(jù)存儲(chǔ)技術(shù)相關(guān))+HBase(數(shù)據(jù)庫(kù))+MapReduce(數(shù)據(jù)處理)+……Others
Hadoop用到的一些技術(shù)有:
說了這么多,舉個(gè)實(shí)際的例子,雖然這個(gè)例子有些陳舊,但是淘寶的海量數(shù)據(jù)技術(shù)架構(gòu)還是有助于我們理解對(duì)于大數(shù)據(jù)的運(yùn)作處理機(jī)制:
如上圖所示,淘寶的海量數(shù)據(jù)產(chǎn)品技術(shù)架構(gòu)分為五個(gè)層次,從上至下來看它們分別是:數(shù)據(jù)源,計(jì)算層,存儲(chǔ)層,查詢層和產(chǎn)品層。
數(shù)據(jù)來源層。存放著淘寶各店的交易數(shù)據(jù)。在數(shù)據(jù)源層產(chǎn)生的數(shù)據(jù),通過DataX,DbSync和Timetunel準(zhǔn)實(shí)時(shí)的傳輸?shù)较旅娴?點(diǎn)所述的“云梯”。
計(jì)算層。在這個(gè)計(jì)算層內(nèi),淘寶采用的是Hadoop集群,這個(gè)集群,我們暫且稱之為云梯,是計(jì)算層的主要組成部分。在云梯上,系統(tǒng)每天會(huì)對(duì)數(shù)據(jù)產(chǎn)品進(jìn)行不同的MapReduce計(jì)算。
存儲(chǔ)層。在這一層,淘寶采用了兩個(gè)東西,一個(gè)使MyFox,一個(gè)是Prom。MyFox是基于MySQL的分布式關(guān)系型數(shù)據(jù)庫(kù)的集群,Prom是基于Hadoop Hbase技術(shù)的一個(gè)NoSQL的存儲(chǔ)集群。
查詢層。在這一層中,Glider是以HTTP協(xié)議對(duì)外提供restful方式的接口。數(shù)據(jù)產(chǎn)品通過一個(gè)唯一的URL來獲取到它想要的數(shù)據(jù)。同時(shí),數(shù)據(jù)查詢即是通過MyFox來查詢的。
最后一層是產(chǎn)品層,這個(gè)就不用解釋了。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
訓(xùn)練與驗(yàn)證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對(duì)數(shù)據(jù)的需求已從 “存儲(chǔ)” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計(jì)基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計(jì)基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11