
大數(shù)據(jù)究竟是什么3_數(shù)據(jù)分析師
未來的大數(shù)據(jù)除了將更好的解決社會問題,商業(yè)營銷問題,科學(xué)技術(shù)問題,還有一個可預(yù)見的趨勢是以人為本的大數(shù)據(jù)方針。人才是地球的主宰,大部分的數(shù)據(jù)都與人類有關(guān),要通過大數(shù)據(jù)解決人的問題。
比如,建立個人的數(shù)據(jù)中心,將每個人的日常生活習(xí)慣,身體體征,社會網(wǎng)絡(luò),知識能力,愛好性情,疾病嗜好,情緒波動……換言之就是記錄人從出生那一刻起的每一分每一秒,將除了思維外的一切都儲存下來,這些數(shù)據(jù)可以被充分的利用:
……
當(dāng)然,上面的一切看起來都很美好,但是否是以犧牲了用戶的自由為前提呢?只能說當(dāng)新鮮事物帶來了革新的同時也同樣帶來了“病菌”。比如,在手機(jī)未普及前,大家喜歡聚在一起聊天,自從手機(jī)普及后特別是有了互聯(lián)網(wǎng),大家不用聚在一起也可以隨時隨地的聊天,只是“病菌”滋生了另外一種情形,大家慢慢習(xí)慣了和手機(jī)共渡時光,人與人之間情感交流仿佛永遠(yuǎn)隔著一張“網(wǎng)”。
你或許并不敏感,當(dāng)你在不同的網(wǎng)站上注冊了個人信息后,可能這些信息已經(jīng)被擴(kuò)散出去了,當(dāng)你莫名其妙的接到各種郵件,電話,短信的滋擾時,你不會想到自己的電話號碼,郵箱,生日,購買記錄,收入水平,家庭住址,親朋好友等私人信息早就被各種商業(yè)機(jī)構(gòu)非法存儲或賤賣給其它任何有需要的企業(yè)或個人了。
更可怕的是,這些信息你永遠(yuǎn)無法刪除,它們永遠(yuǎn)存在于互聯(lián)網(wǎng)的某些你不知道的角落。除非你更換掉自己的所有信息,但是這代價太大了。
用戶隱私問題一直是大數(shù)據(jù)應(yīng)用難以繞開的一個問題,如被央視曝光過的分眾無線、羅維鄧白氏以及網(wǎng)易郵箱都涉及侵犯用戶隱私。目前,中國并沒有專門的法律法規(guī)來界定用戶隱私,處理相關(guān)問題時多采用其他相關(guān)法規(guī)條例來解釋。但隨著民眾隱私意識的日益增強(qiáng),合法合規(guī)地獲取數(shù)據(jù)、分析數(shù)據(jù)和應(yīng)用數(shù)據(jù),是進(jìn)行大數(shù)據(jù)分析時必須遵循的原則。
說到隱私被侵犯,愛德華?斯諾登應(yīng)該占據(jù)一席之地,這位前美國中央情報局(CIA)雇員一手引爆了美國“棱鏡計劃”(PRISM)的內(nèi)幕消息?!袄忡R”項目是一項由美國國家安全局(NSA)自2007年起開始實施的絕密電子監(jiān)聽計劃,年耗資近2000億美元,用于監(jiān)聽全美電話通話記錄,據(jù)稱還可以使情報人員通過“后門”進(jìn)入9家主要科技公司的服務(wù)器,包括微軟、雅虎、谷歌、Facebook、PalTalk、美國在線、Skype、YouTube、蘋果。這個事件引發(fā)了人們對政府使用大數(shù)據(jù)時對公民隱私侵犯的擔(dān)心。
再看看我們身邊,當(dāng)微博,微信,QQ空間這些社交平臺肆意的吞噬著數(shù)億用戶的各種信息時,你就不要指望你還有隱私權(quán)了,就算你在某個地方刪除了,但也許這些信息已經(jīng)被其他人轉(zhuǎn)載或保存了,更有可能已經(jīng)被百度或Google存為快照,早就提供給任意用戶搜索了。
因此在大數(shù)據(jù)的背景下,很多人都在積極的抵制無底線的數(shù)字化,這種大數(shù)據(jù)和個體之間的博弈還會一直繼續(xù)下去……
專家給予了我們一些如何有效保護(hù)大數(shù)據(jù)背景下隱私權(quán)的建議:1-減少信息的數(shù)字化;2-隱私權(quán)立法;3-數(shù)字隱私權(quán)基礎(chǔ)設(shè)施(類似DRM數(shù)字版權(quán)管理);4-人類改變認(rèn)知(接受忽略過去);5-創(chuàng)造良性的信息生態(tài);6-語境化。
但是這些都很難立即見效或者有實質(zhì)性的改善。
比如,現(xiàn)在有一種職業(yè)叫刪帖人,專門負(fù)責(zé)幫人到各大網(wǎng)站刪帖,刪除評論。其實這些人就是通過黑客技術(shù)侵入各大網(wǎng)站,破獲管理員的密碼然后進(jìn)行手工定向刪除。只不過他們保護(hù)的不是客戶的隱私,而大多是丑聞。還有一種職業(yè)叫人肉專家,他們負(fù)責(zé)從互聯(lián)網(wǎng)上找到一個與他們根本就無關(guān)系用戶的任意信息。這是很可怕的事情,也就是說,如果有人想找到你,只需要兩個條件:1-你上過網(wǎng),留下過痕跡;2-你的親朋好友或僅僅是認(rèn)識你的人上過網(wǎng),留下過你的痕跡。這兩個條件滿足其一,人肉專家就可以很輕松的找到你,可能還知道你現(xiàn)在正在某個餐廳和誰一起共進(jìn)晚餐。
當(dāng)很多互聯(lián)網(wǎng)企業(yè)意識到隱私對于用戶的重要性時,為了繼續(xù)得到用戶的信任,他們采取了很多辦法,比如google承諾僅保留用戶的搜索記錄9個月,瀏覽器廠商提供了無痕沖浪模式,社交網(wǎng)站拒絕公共搜索引擎的爬蟲進(jìn)入,并將提供出去的數(shù)據(jù)全部采取匿名方式處理等。
在這種復(fù)雜的環(huán)境里面,很多人依然沒有建立對于信息隱私的保護(hù)意識,讓自己一直處于被滋擾,被精心設(shè)計,被利用,被監(jiān)視的處境中??墒?,我們能做的幾乎微乎其微,因為個人隱私數(shù)據(jù)已經(jīng)無法由我們自己掌控了,就像一首詩里說到的:“如果你現(xiàn)在繼續(xù)麻木,那就別指望這麻木能抵擋得住被”扒光”那一刻的驚恐和絕望……”
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機(jī)器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機(jī)器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11