
大數(shù)據(jù)行業(yè)就業(yè)指南:三大方向 十大職位
當(dāng)下,大數(shù)據(jù)的趨勢已逐步從概念走向落地,而在IT人跟隨大數(shù)據(jù)浪潮的轉(zhuǎn)型中,各大企業(yè)對大數(shù)據(jù)高端人才的需求也越來越緊迫。這一趨勢,也給想要從事大數(shù)據(jù)方面工作的人員提供了難得的職業(yè)機遇。
思數(shù)云計算和大數(shù)據(jù)服務(wù)中心,簡稱思數(shù)云(隸屬于北京思數(shù)科技有限公司),是國內(nèi)專業(yè)大數(shù)據(jù)分析培訓(xùn)、咨詢機構(gòu)。中國云計算大數(shù)據(jù)處理委員會、與中科院軟件所、清華大學(xué)以及Google、Yahoo、騰訊、阿里、移動研究院等大數(shù)據(jù)技術(shù)人員一起合作,在2012年組建了”NewBI-思數(shù)云服務(wù)” 大數(shù)據(jù)服務(wù)中心。
思數(shù)云從長期實踐總結(jié)出大數(shù)據(jù)主要的三大就業(yè)方向:大數(shù)據(jù)系統(tǒng)研發(fā)類人才、大數(shù)據(jù)應(yīng)用開發(fā)類人才和大數(shù)據(jù)分析類人才。在此三大方向中,各自的基礎(chǔ)崗位一般為大數(shù)據(jù)系統(tǒng)研發(fā)工程師、大數(shù)據(jù)應(yīng)用開發(fā)工程師和數(shù)據(jù)分析師。
從企業(yè)方面來說,大數(shù)據(jù)人才大致可以分為產(chǎn)品和市場分析、安全和風(fēng)險分析以及商業(yè)智能三大領(lǐng)域。產(chǎn)品分析是指通過算法來測試新產(chǎn)品的有效性,是一個相對較 新的領(lǐng)域。在安全和風(fēng)險分析方面,數(shù)據(jù)科學(xué)家們知道需要收集哪些數(shù)據(jù)、如何進行快速分析,并最終通過分析信息來有效遏制網(wǎng)絡(luò)入侵或抓住網(wǎng)絡(luò)罪犯。
一、ETL研發(fā)
隨著數(shù)據(jù)種類的不斷增加,企業(yè)對數(shù)據(jù)整合專業(yè)人才的需求越來越旺盛。ETL開發(fā)者與不同的數(shù)據(jù)來源和組織打交道,從不同的源頭抽取數(shù)據(jù),轉(zhuǎn)換并導(dǎo)入數(shù)據(jù)倉庫以滿足企業(yè)的需要。
ETL研發(fā),主要負(fù)責(zé)將分散的、異構(gòu)數(shù)據(jù)源中的數(shù)據(jù)如關(guān)系數(shù)據(jù)、平面數(shù)據(jù)文件等抽取到臨時中間層后進行清洗、轉(zhuǎn)換、集成,最后加載到數(shù)據(jù)倉庫或數(shù)據(jù)集市中,成為聯(lián)機分析處理、數(shù)據(jù)挖掘的基礎(chǔ)。
目前,ETL行業(yè)相對成熟,相關(guān)崗位的工作生命周期比較長,通常由內(nèi)部員工和外包合同商之間通力完成。ETL人才在大數(shù)據(jù)時代炙手可熱的原因之一是:在企業(yè)大數(shù)據(jù)應(yīng)用的早期階段,Hadoop只是窮人的ETL。
二、Hadoop開發(fā)
Hadoop的核心是HDFS和MapReduce.HDFS提供了海量數(shù)據(jù)的存儲,MapReduce提供了對數(shù)據(jù)的計算。隨著數(shù)據(jù)集規(guī)模不斷增大,而傳統(tǒng)BI的數(shù)據(jù)處理成本過高,企業(yè)對Hadoop及相關(guān)的廉價數(shù)據(jù)處理技術(shù)如Hive、HBase、MapReduce、Pig等的需求將持續(xù)增長。如今具備Hadoop框架經(jīng)驗的技術(shù)人員是最搶手的大數(shù)據(jù)人才。
三、可視化(前端展現(xiàn))工具開發(fā)
海量數(shù)據(jù)的分析是個大挑戰(zhàn),而新型數(shù)據(jù)可視化工具如Spotifre,Qlikview和Tableau可以直觀高效地展示數(shù)據(jù)。
可視化開發(fā)就是在可視開發(fā)工具提供的圖形用戶界面上,通過操作界面元素,由可視開發(fā)工具自動生成應(yīng)用軟件。還可輕松跨越多個資源和層次連接您的所有數(shù) 據(jù),經(jīng)過時間考驗,完全可擴展的,功能豐富全面的可視化組件庫為開發(fā)人員提供了功能完整并且簡單易用的組件集合,以用來構(gòu)建極其豐富的用戶界面。
過去,數(shù)據(jù)可視化屬于商業(yè)智能開發(fā)者類別,但是隨著Hadoop的崛起,數(shù)據(jù)可視化已經(jīng)成了一項獨立的專業(yè)技能和崗位。
四、信息架構(gòu)開發(fā)
大數(shù)據(jù)重新激發(fā)了主數(shù)據(jù)管理的熱潮。充分開發(fā)利用企業(yè)數(shù)據(jù)并支持決策需要非常專業(yè)的技能。信息架構(gòu)師必須了解如何定義和存檔關(guān)鍵元素,確保以最有效的方式進行數(shù)據(jù)管理和利用。信息架構(gòu)師的關(guān)鍵技能包括主數(shù)據(jù)管理、業(yè)務(wù)知識和數(shù)據(jù)建模等。
五、數(shù)據(jù)倉庫研究
數(shù)據(jù)倉庫是為企業(yè)所有級別的決策制定過程提供支持的所有類型數(shù)據(jù)的戰(zhàn)略集合。它是單個數(shù)據(jù)存儲,出于分析性報告和決策支持的目的而創(chuàng)建。為企業(yè)提供需要業(yè)務(wù)智能來指導(dǎo)業(yè)務(wù)流程改進和監(jiān)視時間、成本、質(zhì)量和控制。
數(shù)據(jù)倉庫的專家熟悉Teradata、Neteeza和Exadata等公司的大數(shù)據(jù)一體機。能夠在這些一體機上完成數(shù)據(jù)集成、管理和性能優(yōu)化等工作。
六、OLAP開發(fā)
隨著數(shù)據(jù)庫技術(shù)的發(fā)展和應(yīng)用,數(shù)據(jù)庫存儲的數(shù)據(jù)量從20世紀(jì)80年代的兆(M)字節(jié)及千兆(G)字節(jié)過渡到現(xiàn)在的兆兆(T)字節(jié)和千兆兆(P)字節(jié),同時,用戶的查詢需求也越來越復(fù)雜,涉及的已不僅是查詢或操縱一張關(guān)系表中的一條或幾條記錄,而且要對多張表中千萬條記錄的數(shù)據(jù)進行數(shù)據(jù)分析和信息綜合。聯(lián)機分析處理(OLAP)系統(tǒng)就負(fù)責(zé)解決此類海量數(shù)據(jù)處理的問題。
OLAP在線聯(lián)機分析開發(fā)者,負(fù)責(zé)將數(shù)據(jù)從關(guān)系型或非關(guān)系型數(shù)據(jù)源中抽取出來建立模型,然后創(chuàng)建數(shù)據(jù)訪問的用戶界面,提供高性能的預(yù)定義查詢功能。
七、數(shù)據(jù)科學(xué)研究
這一職位過去也被稱為數(shù)據(jù)架構(gòu)研究,數(shù)據(jù)科學(xué)家是一個全新的工種,能夠?qū)⑵髽I(yè)的數(shù)據(jù)和技術(shù)轉(zhuǎn)化為企業(yè)的商業(yè)價值。隨著數(shù)據(jù)學(xué)的進展,越來越多的實際工作 將會直接針對數(shù)據(jù)進行,這將使人類認(rèn)識數(shù)據(jù),從而認(rèn)識自然和行為。因此,數(shù)據(jù)科學(xué)家首先應(yīng)當(dāng)具備優(yōu)秀的溝通技能,能夠同時將數(shù)據(jù)分析結(jié)果解釋給IT部門和業(yè)務(wù)部門領(lǐng)導(dǎo)。
總的來說,數(shù)據(jù)科學(xué)家是分析師、藝術(shù)家的合體,需要具備多種交叉科學(xué)和商業(yè)技能。
八、數(shù)據(jù)預(yù)測(數(shù)據(jù)挖掘)分析
營銷部門經(jīng)常使用預(yù)測分析預(yù)測用戶行為或鎖定目標(biāo)用戶。預(yù)測分析開發(fā)者有些場景看上有有些類似數(shù)據(jù)科學(xué)家,即在企業(yè)歷史數(shù)據(jù)的基礎(chǔ)上通過假設(shè)來測試閾值并預(yù)測未來的表現(xiàn)。
九、企業(yè)數(shù)據(jù)管理
企業(yè)要提高數(shù)據(jù)質(zhì)量必須考慮進行數(shù)據(jù)管理,并需要為此設(shè)立數(shù)據(jù)管家職位,這一職位的人員需要能夠利用各種技術(shù)工具匯集企業(yè)周圍的大量數(shù)據(jù),并將數(shù)據(jù)清洗 和規(guī)范化,將數(shù)據(jù)導(dǎo)入數(shù)據(jù)倉庫中,成為一個可用的版本。然后,通過報表和分析技術(shù),數(shù)據(jù)被切片、切塊,并交付給成千上萬的人。擔(dān)當(dāng)數(shù)據(jù)管家的人,需要保證 市場數(shù)據(jù)的完整性,準(zhǔn)確性,唯一性,真實性和不冗余。
十、數(shù)據(jù)安全研究
數(shù)據(jù)安全這一職位,主要負(fù)責(zé)企業(yè)內(nèi)部大型服務(wù)器、存儲、數(shù)據(jù)安全管理工作,并對網(wǎng)絡(luò)、信息安全項目進行規(guī)劃、設(shè)計和實施。數(shù)據(jù)安全研究員還需要具有較強的管理經(jīng)驗,具備運維管理方面的知識和能力,對企業(yè)傳統(tǒng)業(yè)務(wù)有較深刻的理解,才能確保企業(yè)數(shù)據(jù)安全做到一絲不漏。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10